Difference between revisions of "Publications:A Kernel based multi-resolution time series analysis for screening deficiencies in paper production"

From ISLAB/CAISR
Jump to navigationJump to search
(Created page with "<div style='display: none'> == Do not edit this section == </div> {{PublicationSetupTemplate|Author=Marcus Ejnarsson, Carl Magnus Nilsson, Antanas Verikas |PID=239221 |Name=Ej...")
 
 
Line 4: Line 4:
 
{{PublicationSetupTemplate|Author=Marcus Ejnarsson, Carl Magnus Nilsson, Antanas Verikas
 
{{PublicationSetupTemplate|Author=Marcus Ejnarsson, Carl Magnus Nilsson, Antanas Verikas
 
|PID=239221
 
|PID=239221
|Name=Ejnarsson, Marcus [marejnx] (Högskolan i Halmstad [2804], Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) [3905], Halmstad Embedded and Intelligent Systems Research (EIS) [3938], Intelligenta system (IS-lab) [3941]);Nilsson, Carl Magnus [cmn] (Högskolan i Halmstad [2804], Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) [3905], Halmstad Embedded and Intelligent Systems Research (EIS) [3938], Intelligenta system (IS-lab) [3941]);Verikas, Antanas [av] (Högskolan i Halmstad [2804], Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) [3905], Halmstad Embedded and Intelligent Systems Research (EIS) [3938], Intelligenta system (IS-lab) [3941])
+
|Name=Ejnarsson, Marcus (marejnx) (Högskolan i Halmstad (2804), Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) (3905), Halmstad Embedded and Intelligent Systems Research (EIS) (3938), Intelligenta system (IS-lab) (3941));Nilsson, Carl Magnus (cmn) (Högskolan i Halmstad (2804), Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) (3905), Halmstad Embedded and Intelligent Systems Research (EIS) (3938), Intelligenta system (IS-lab) (3941));Verikas, Antanas (av) (0000-0003-2185-8973) (Högskolan i Halmstad (2804), Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE) (3905), Halmstad Embedded and Intelligent Systems Research (EIS) (3938), Intelligenta system (IS-lab) (3941))
 
|Title=A Kernel based multi-resolution time series analysis for screening deficiencies in paper production
 
|Title=A Kernel based multi-resolution time series analysis for screening deficiencies in paper production
 
|PublicationType=Conference Paper
 
|PublicationType=Conference Paper
Line 55: Line 55:
 
|CreatedDate=2008-10-06
 
|CreatedDate=2008-10-06
 
|PublicationDate=2008-10-06
 
|PublicationDate=2008-10-06
|LastUpdated=2013-05-24
+
|LastUpdated=2014-11-10
 
|diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:239221}}
 
|diva=http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:239221}}
 
<div style='display: none'>
 
<div style='display: none'>

Latest revision as of 21:40, 30 September 2016

Do not edit this section

Property "Publisher" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user.

Keep all hand-made modifications below

Title A Kernel based multi-resolution time series analysis for screening deficiencies in paper production
Author
Year 2006
PublicationType Conference Paper
Journal
HostPublication Advances in neural networks - ISNN 2006 : third International Symposium on Neural Networks, Chengdu, China, May 28 - June 1, 2006 ; proceedings. III
Conference third International Symposium on Neural Networks, Chengdu, China, May 28 - June 1, 2006
DOI http://dx.doi.org/10.1007/11760191
Diva url http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:239221
Abstract

This paper is concerned with a multi-resolution tool for analysis of a time series aiming to detect abnormalities in various frequency regions. The task is treated as a kernel based novelty detection applied to a multi-level time series representation obtained from the discrete wavelet transform. Having a priori knowledge that the abnormalities manifest themselves in several frequency regions, a committee of detectors utilizing data dependent aggregation weights is build by combining outputs of detectors operating in those regions.