Property:Abstract
From ISLAB/CAISR
Jump to navigationJump to searchThis is a property of type Text.
A
<p>The outer hair cells (OHC) of the mammalian inner ear change the sensitivity and frequency selectivity of the filtering system of the cochlea using two kinds of mechanical activity: the somatic motility and the active hair bundle motion. We designed a non-linear adaptive model of the OHC employing both mechanisms of the mechanical activity. The modeling results show that the high sensitivity and frequency selectivity of the filtering system of the cochlea depend on the somatic motility of the OHC. However, both mechanisms of mechanical activity are involved in the adaptation to sound intensity and efferent-synaptic influence. The fast (alternating) component (AC) of the mechanical–electrical transduction signal controls the motor protein prestin and fast changes in axial length of the cell. The slow (direct) component (DC) appearing at high signal intensity affects the axial stiffness, the cell length and the position of the hair bundle. The efferent influence is realized by the same mechanism.</p> +
An adaptive panoramic filter bank as a qualitative model of the filtering system of the cochlea : The peculiarities in linear and nonlinear mode +
<p>Outer hair cells in the cochlea of the ear, together with the local structures of the basilar membrane, reticular lamina and tectorial membrane constitute the adaptive primary filters (PF) of the second order. We used them for designing a serial-parallel signal filtering system. We determined a rational number of the PF included in Gaussian channels of the system, summation weights of the output signals, and distribution of the PF along the basilar membrane. A Gaussian panoramic filter bank each channel of which consists of five PF is presented as an example. The properties of the PF, the channel and the filter bank operating in the linear and nonlinear modes are determined during adaptation and under efferent control. The results suggest that application of biological filtering principles can be useful for designing cochlear implants with new speech encoding strategies.</p> +
<p>This paper presents an autonomous agricultural mobile robot for mechanical weed control in outdoor environments. The robot employs two vision systems: one gray-level vision system that is able to recognize the row structure formed by the crops and to guide the robot along the rows and a second, color-based vision system that is able to identify a single crop among weed plants. This vision system controls a weeding-tool that removes the weed within the row of crops. The row-recognition system is based on a novel algorithm and has been tested extensively in outdoor field tests and proven to be able to guide the robot with an accuracy of 2 cm. It has been shown that color vision is feasible for single plant identification, i.e., discriminating between crops and weeds. The system as a whole has been verified, showing that the subsystems are able to work together effectively. A first trial in a greenhouse showed that the robot is able to manage weed control within a row of crops.</p> +
<p>This paper presents an overview of an autonomous robotic system for material handling. The system is being developed by extending the functionalities of traditional AGVs to be able to operate reliably and safely in highly dynamic environments. Traditionally, the reliable functioning of AGVs relies on the availability of adequate infrastructure to support navigation. In the target environments of our system, such infrastructure is difficult to setup in an efficient way. Additionally, the location of objects to handle are unknown, which requires runtime object detection and tracking. Another requirement to be fulfilled by the system is the ability to generate trajectories dynamically, which is uncommon in industrial AGV systems. ©2009 IEEE.</p> +
<p>A data-driven controller design procedure is proposed in this paper. The controller is based on both an estimated plant model and its estimated uncertainty described by an ellipsoid in parameter space. Desired performance is specified by the speed and the damping of the modeled response. The unmodeled response is rejected by requiring robust performance with respect to a generalized stability region. Moreover, estimation of a disturbance model enables further rejection of the unmodeled response. The methodology is applied to a nonlinear and unstable magnetic suspension system. High performance is achieved for various specifications over a large operational range.</p> +
<p>This short communication concerns identification of the number of magnetic correction shunts and their positions for deflection yoke tuning to correct the misconvergence of colours of a cathode ray tube. The misconvergence of colours is characterised by the distances measured between the traces of red and blue beams. The method proposed consists of two phases, namely, learning and optimisation. In the learning phase, the radial basis function neural network is trained to learn a mapping: correction shunt position→changes in misconvergence. In the optimisation phase, the trained neural network is used to predict changes in misconvergence depending on a correction shunt position. An optimisation procedure based on the predictions returned by the neural net is then executed in order to find the minimal number of correction shunts needed and their positions. During the experimental investigations, 98% of the deflection yokes analysed have been tuned successfully using the technique proposed.</p> +
<p>It is desirable for an engine control system to maintain a stable combustion. A high combustion variability (typically measured by the relative variations in produced work, COV(IMEP)) can indicate the use of too much EGR or a too lean air-fuel mixture, which results in less engine efficiency(in terms of fuel and emissions) and reduced driveability. The coefficient of variation (COV) of the ion current integral has previously been shown in several papers to be correlated to the coefficient of variation of IMEP for various disturbances (e.g. AFR, EGR and fuel timing). This paper presents a cycle-to-cycle ion current based method of estimating the approximate category of IMEP (either normal burn, slow burn, partial burn or misfire) for the case of lean air-fuel ratio. The rate of appearance of the partial burn and misfire categories is then shown to be well correlated with the onset of high combustion variability(high COV(IMEP)). It is demonstrated that the detection of these categories can result in faster determination(prediction) of high variability compared to only using the COV(Ion integral). Copyright © 2004 SAE International.</p> +
<p>In this paper a novel ion current based estimation scheme for the in-cylinder pressure peak position (PPP) is proposed. A reliable estimate is constructed by appropriate signal processing based on local curvatures of the post flame phase of the ion current. The peak-finding algorithm is simple and easy to implement in an engine control unit for feedback control of the combustion phasing. Results on real data, sampled onboard a commercial car are presented. Further, the performance of the algorithm is compared to two state of the art algorithms for PPP estimation from the ion current. The comparison shows that the algorithm presented in this paper outperforms its competitors. Copyright © 2000 Society of Automotive Engineers, Inc.</p> +
<p>In multiple industries, including automotive one, predictive maintenance is becoming more and more important, especially since the focus shifts from product to service-based operation. It requires, among other, being able to provide customers with uptime guarantees. It is natural to investigate the use of data mining techniques, especially since the same shift of focus, as well as technological advancements in the telecommunication solutions, makes long-term data collection more widespread.</p><p>In this paper we describe our experiences in predicting compressor faults using data that is logged on-board Volvo trucks. We discuss unique challenges that are posed by the specifics of the automotive domain. We show that predictive maintenance is possible and can result in significant cost savings, despite the relatively low amount of data available. We also discuss some of the problems we have encountered by employing out-of-the-box machine learning solutions, and identify areas where our task diverges from common assumptions underlying the majority of data mining research.</p> +
<p>A measurement platform for online studies of print runnability in a full-scale four-high web offset printing press is described. Results from two trial runs showed no effect of reel tightness on print runnability. Differences were, however, found for so called edge reels.</p> +
<p>This paper analyses two visual odometry systems for use in an agricultural field environment. The impact of various design parameters and camera setups are evaluated in a simulation environment. Four real field experiments were conducted using a mobile robot operating in an agricultural field. The robot was controlled to travel in a regular back-and-forth pattern with headland turns. The experimental runs were 1.8–3.1 km long and consisted of 32–63,000 frames. The results indicate that a camera angle of 75° gives the best results with the least error. An increased camera resolution only improves the result slightly. The algorithm must be able to reduce error accumulation by adapting the frame rate to minimise error. The results also illustrate the difficulties of estimating roll and pitch using a downward-facing camera. The best results for full 6-DOF position estimation were obtained on a 1.8-km run using 6680 frames captured from the forward-facing cameras. The translation error ( x , y , z ) is 3.76% and the rotational error (i.e., roll, pitch, and yaw) is 0.0482 deg m−1. The main contributions of this paper are an analysis of design option impacts on visual odometry results and a comparison of two state-of-the-art visual odometry algorithms, applied to agricultural field data.</p> +
<p>In low-voltage energy distribution networks, analyzing and modelingpropagation of disturbances is important as we are moving towards smartgrids. Today, smart meters are generally deployed at all customers and continuouslymeasure several features related to power consumption and quality.However, the data collected from such low-cost devices has been, until now,considered unsuitable for analysis of disturbance propagation, mainly due to itsvery low time resolution. This paper demonstrates that the existence of propagationin the low-voltage grids can be detected using smart meters alarm data.In particular, several models for propagation of disturbances, within neighborcustomers in different levels of the grid topology, are investigated. A methodfor measuring how the reality corresponds to each of the models, by measuringthe similarity between real data and synthetic data, is proposed. Theresults show that the models which include propagation within both deliverypointsand branches are better representation of the disturbances in the realdata, compared to other models. Furthermore, the paper presents smart metersalarm dataset (SMAData), an open-source dataset containing power qualitydisturbances of over 1000 customers.</p> +
<p>A control procedure is proposed for an ankle-footorthosis (AFO) for different gait situations, such as inclinations and stairs. This paper presents a novel AFO control of the ankle angle. A magneto-rheological damper was used to achieve ankle damping during foot down and locking at swing, thereby avoiding foot slap as well as foot drop.</p><p>The controller used feedback from the ankle angle only. Still it was capable of not only adjusting damping within a gait step but also changing control behavior depending on level walking, ascending and descending stairs. As a consequence, toe strike was possible in stair gait as opposed to heel strike in level walking.</p><p>Tests verified the expected behavior in stair gait and in level walking where gait speed and ground inclinations varied. The self-adjusted AFO is believed to improve gait comfort in slopes and stairs.</p> +
<p>Fluorescence from paper following excitation by either ultraviolet or visible light gives information on the chemical composition of the paper. This can be used for on-line monitoring of the paper during production. Such measurements can be performed non-intrusively at sampling rates high enough to give a sub-millimetre resolution at paper webs moving at velocities higher than 20 metres per second. Two types of fluorescence meters, operating at different wavelengths, have been constructed. Together with an optical speedometer they have been tested at newsprint producing paper mills. A fluorescence based method for scanning cross-directional newsprint profiles in the laboratory has been developed. From these measurements the relative shrinkage of the paper during drying can be calculated using time-frequency analysis.</p> +
Application of self-determination theory in the e-health industry -- promoting sustainable exercise motivation +
<p>Developing tailored digital interventions for exercise motivation by applying behavioral theory into existing web services in cooperation with the e-health industry could create a mutual base for experience exchange and practical implications. It could also add higher standards to e-health business by providing a scientifically sound and trustworthy foundation for digital solutions. This project aims to design an interactive tool grounded in sport and exercise psychology and combined with the latest expertise from information technology and innovation science, considering e-health industrial requirements and user needs. A main objective is to test the efficacy of using Self-Determination Theory (SDT) in designing, constructing and evaluating an exercise intervention. The digital intervention is based on a literature review mapping exercise motivation related to self-determination theory, complemented by qualitative cross-disciplinary interaction design methodologies, such as qualitative analysis of interviews and contextual observation capturing participant goals, behaviour, preferences, attitudes and frustrations. Intervention contents are essentially autonomy supportive structures, goal-setting support and relapse prevention, self-regulation structures, health information and web links. In February 2015 the intervention prototype will be pilot tested in a randomized controlled trial (RCT), involving existing members and clients (N > 10 000) of two health service companies. Outcomes relate to self-determined exercise motivation (The Basic Psychological Needs in Exercise Scale and The Behavioral Regulation in Exercise Questionnaire-2) and exercise behaviour, measured both by self-report measures (Godin Leisure-Time Exercise Questionnaire) and step counters. The RCT contains three measure points in order to allow advanced analyses of change and mechanisms based on the SDT-process model and motivational profiles. Latent growth curve and structural equation models will primarily be used to analyse data. This pilot study will create a baseline for elaboration into a second phase, were the digital tool will be further developed and longitudinally tested and evaluated over a nine months period. © 2015 University of Bern, Institut of Sport Science </p>
<p>Background: Speech disorder is a common manifestation of Parkinson's disease with two main symptoms, dysprosody and dysphonia. Previous research studying objective measures of speech symptoms involved patients and examiners who were native language speakers. Measures such as cepstral separation difference (CSD) features to quantify dysphonia and dysprosody accurately distinguish the severity of speech impairment. Importantly CSD, together with other speech features, including Mel-frequency coefficients, fundamental-frequency variation, and spectral dynamics, characterize speech intelligibility in PD. However, non-native language speakers transfer phonological rules of their mother language that tamper speech assessment.</p><p>Objectives: This paper explores CSD's capability: first, to quantify dysprosody and dysphonia of non-native language speakers, Parkinson patients and controls, and secondly, to characterize the severity of speech impairment when Parkinson's dysprosody accompanies non-native linguistic dysprosody.</p><p>Methods: CSD features were extracted from 168 speech samples recorded from 19 healthy controls, 15 rehabilitated and 23 not-rehabilitated Parkinson patients in three different clinical speech tests based on Unified Parkinson's disease rating scale motor-speech examination. Statistical analyses were performed to compare groups using analysis of variance, intraclass correlation, and Guttman correlation coefficient µ2. Random forests were trained to classify the severity of speech impairment using CSD and the other speech features. Feature importance in classification was determined using permutation importance score.</p><p>Results: Results showed that the CSD feature describing dysphonia was uninfluenced by non-native accents, strongly correlated with the clinical examination (µ2>0.5), and significantly discriminated between the healthy, rehabilitated, and not-rehabilitated patient groups based on the severity of speech symptoms. However, the feature describing dysprosody did not correlate with the clinical examination but significantly distinguished the groups. The classification model based on random forests and selected features characterized the severity of speech impairment of non-native language speakers with high accuracy. Importantly, the permutation importance score of the CSD feature representing dysphonia was the highest compared to other features. Results showed a strong negative correlation (µ2<-0.5) between L-dopa administration and the CSD features.</p><p>Conclusions: Although non-native accents reduce speech intelligibility, the CSD features can accurately characterize speech impairment, which is not always possible in the clinical examination. Findings support using CSD for monitoring Parkinson's disease.</p><p>© 2019 Elsevier Ltd. All rights reserved.</p>
<p>Information processing steps in printing industry are highly automated, except the last one print quality assessment, which usually is a manual, tedious, and subjective procedure. This article presents a random forests-based technique for automatic print quality assessment based on objective values of several printquality attributes. Values of the attributes are obtained from soft sensors through data mining and colour image analysis. Experimental investigations have shown good correspondence between print quality evaluations obtained by the technique proposed and the average observer. (C) 2012 Elsevier B.V. All rights reserved.</p> +
<p>Variations in offset print quality relate to numerous parameters of printing press and paper. To maintain a constant high print quality press operators need to assess, explore and monitor quality of prints. Today assessment is mainly done manually. This paper presents a novel system for assessing and predicting values of print quality attributes, where the adopted, random forests (RFs)-based, modeling approach also allows quantifying the influence of different paper and press parameters on print quality. In contrast to other print quality assessment systems the proposed system utilises common, simple print marks known as double grey-bars. Novel virtual sensors assessing print quality attributes using images of double grey-bars are presented. The inferred influence of paper and printing press parameters on quality of colour prints shows clear relation with known print quality conditions. Thorough analysis and categorisation of related work is also given in the paper. (C) 2012 Elsevier Ltd. All rights reserved.</p> +
Assessment of Gait Symmetry and Gait Normality Using Inertial Sensors : In-Lab and In-Situ Evaluation +
<p>Quantitative gait analysis is a powerful tool for the assessment of a number of physical and cognitive conditions. Unfortunately, the costs involved in providing in-lab 3D kinematic analysis to all patients is prohibitive. Inertial sensors such as accelerometers and gyroscopes may complement in-lab analysis by providing cheaper gait analysis systems that can be deployed anywhere. The present study investigates the use of inertial sensors to quantify gait symmetry and gait normality. The system was evaluated in-lab, against 3D kinematic measurements; and also in-situ, against clinical assessments of hip-replacement patients. Results show that the system not only correlates well with kinematic measurements but it also corroborates various quantitative and qualitative measures of recovery and health status of hip-replacement patients</p> +
<p>A system that combines real-time face tracking as well as the localization of facial landmarks in order to improve the authenticity of fingerprint recognition is introduced. The intended purpose of this application is to assist in securing public areas and individuals, in addition to enforce that the collected sensor data in a multi modal person authentication system originate front present persons, i.e. the system is not under a so called play back attack. Facial features are extracted with the help of Gabor filters and classified by SVM experts. For real-time performance, selected points from a retinotopic grid are used to form regional face models. Additionally only a subset of the Gabor decomposition is used for different face regions. The second modality presented is texture-based fingerprint recognition, exploiting linear symmetry. Experimental results on the proposed system are presented.</p> +