Property:Abstract

From ISLAB/CAISR
Jump to navigationJump to search

This is a property of type Text.

Showing 20 pages using this property.
T
<p>Overtreatment or mistreatment of patients is a phenomenon commonly encountered in health care and especially in the Intensive Care Unit (ICU) resulting in increased morbidity and mortality. We explore the MIMIC-III intensive care unit database and conduct experiments on an interpretable feature space based on the fusion of severity subscores, commonly used to predict mortality in an ICU setting. Clustering of medication and procedure context vectors based on a semantic representation has been performed to find common and individual treatment patterns. Two-day patient health state trajectories of a cohort of congestive heart failure patients are clustered and correlated with the treatment and evaluated based on an increase or reduction of probability of mortality on the second day of stay. Experimental results show differences in treatments and outcomes and the potential for using patient health state trajectories as a starting point for further evaluation of medical treatments and interventions. © Springer Nature Switzerland AG 2019.</p>  +
<p>Topic of the research is exploration and fusion of non-invasive measurements for an accurate detection of pathological larynx. Measurements for human subject encompass results of a specific survey and information extracted by openSMILE toolkit from several audio recordings of sustained phonation (vowel/a/). Clinical diagnosis, assigned by medical specialist, is a target attribute for binary classification into healthy and pathological cases. Random forest (RF) is used here as a base-learner and also as a meta-learner for decision-level fusion. Fusion combines decisions from ensemble of 5 RF classifiers built on 3 variants of audio recording data (raw and after two types of voice activity detection) and 2 variants of questionnaire (with 9 and 26 questions) data. Out-of-bag equal error rate (EER) was found to be higher for audio data and lower for querry, but each variant was outperformed by the fusion where the lowest EER of 4.8% was achieved. Finally, due to noteworthy performance of the querry data, 22 association rules (11 healthy + 11 pathological) using 17 questions were obtained for comprehensible insights.</p>  +
<p>Predictive maintenance is becoming more and more important for the commercial vehicle manufactures, as focus shifts from product- to service-based operation. The idea is to provide a dynamic maintenance schedule, fulfilling specific needs of individual vehicles. Luckily, the same shift of focus, as well as technological advancements in the telecommunication area, make long-term data collection more widespread, delivering the necessary data.</p><p>We have found, however, that the standard attribute-value knowledge representation is not rich enough to capture important dependencies in this domain. Therefore, we are proposing a new rule induction algorithm, inspired by Michalski's classical AQ approach. Our method is aware that data concerning each vehicle consists of time-ordered sequences of readouts. When evaluating candidate rules, it takes into account the composite performance for each truck, instead of considering individual readouts in separation. This allows us more flexibility, in particular in defining desired prediction horizon in a fuzzy, instead of crisp, manner.</p>  +
<p>OBJECTIVE: The objective of this work is to investigate a possibility of creating a computer-aided decision support system for an automated analysis of vocal cord images aiming to categorize diseases of vocal cords. METHODOLOGY: The problem is treated as a pattern recognition task. To obtain a concise and informative representation of a vocal cord image, colour, texture, and geometrical features are used. The representation is further analyzed by a pattern classifier categorizing the image into healthy, diffuse, and nodular classes. RESULTS: The approach developed was tested on 785 vocal cord images collected at the Department of Otolaryngology, Kaunas University of Medicine, Lithuania. A correct classification rate of over 87% was obtained when categorizing a set of unseen images into the aforementioned three classes. CONCLUSION: Bearing in mind the high similarity of the decision classes, the results obtained are rather encouraging and the developed tools could be very helpful for assuring objective analysis of the images of laryngeal diseases.</p>  +
<p>One of the challenges in virtual environments is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the userâs emotions. This paper investigates features extracted from electroencephalogram signals for the purpose of affective state modelling based on Russellâs Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect to enhance interaction experience in virtual environments. The DEAP dataset was used within this work, along with a Support Vector Machine and Random Forest, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the and waves and High Order Crossing of the EEG signal. © 2017, The Author(s).</p>  +
<p>The core of many typical large-scale industrial infrastructure consists of hundreds or thousands of systems that are similar in their basic design and purpose. For instance, District Heating (DH) utilities rely on a large network of substations to deliver heat to their customers. Similarly, a factory may require a large fleet of specialized robots for manufacturing a certain product. Monitoring these systems is important for maintaining the overall efficiency of industrial operations by detecting various problems due to faults and misconfiguration. However, this can be challenging since a well-understood prior model for each system is rarely available. In most cases, each system in a fleet or network is fitted with a set of sensors to measure its state at different time intervals. Typically, a data-driven model for each system can be used for their monitoring. However, not all factors that can possibly influence the operations of each system in a fleet or network has an associated sensor. Moreover, sufficient instances of normal, atypical and faulty behavior are rarely available to train such a model. These issues can impede the effectiveness of a system level data-driven model. Alternatively, it can be assumed that since all the systems in a fleet or network are working on a similar task, they should all behave in a homogeneous manner. Any system that behaves differently from the majority is then considered as an outlier. This is referred to as the global model at the fleet or network level. While the approach is simple, it is less effective in the presence of non-stationary working conditions. Hence, both system level and global modeling approaches have their limitations. </p><p>This thesis investigates system level and fleet or network level (global) models for large-scale monitoring, and proposes an alternative way which is referred to as a reference-group based approach. Herein, the operational monitoring of each system, referred to as a target, is delegated to a reference-group, which consists of systems experiencing a comparable operating regime along with the target. Thus, the definition of a normal, atypical or faulty operational behavior in a target system is described relative to its reference-group. In this sense, if the target system is not behaving operationally in consort with the systems in its reference-group, then it can be inferred that this is either due to a fault or because of some atypical operation arising at the target system due to its local peculiarities. The application area for these investigations is the large-scale operational monitoring of thermal energy systems: networks of district heating (DH) substations and fleets of heatpumps. The current findings indicate three advantages of a reference-group based approach. The first is that the reference operational behavior of any system in the fleet or network does not need to be predefined. The second is that it provides a basis for what a system’s operational behavior should have been and what it is. In this respect, each system in the reference-group provides an evidence about a particular behavior during a particular time period. This can be very useful when the description of a normal, atypical and faulty operational behavior is not available. The third is that it can detect potential atypical and faulty operational behavior quicker compared to global models of outlier detection at the fleet or network level.</p>  
<p>This article is concerned with soft computing-based noninvasive screening for malignant disorders in human larynx. The suitability of two types of data for the analysis is explored. The questionnaire data and the digital voice recordings of the sustained phonation of the vowel sound /a/ are the data types considered in this study. The screening is considered as a task of data classification into the healthy, cancerous, and noncancerous classes. To explore data and decisions a nonlinear mapping technique exhibiting the property of local data ordering is applied. The classification accuracy of over 92% was obtained for unseen questionnaire data collected from 240 subjects. The experimental investigations have shown that, concerning the three classes, the questionnaire data carry much more discriminative information than the voice signal. Two-dimensional plots created using the mapping technique provide further insights into the data and decisions obtained from the classifiers.</p>  +
<p>It is difficult to implement predictive maintenance in the automotive industry as it looks today, since the sensor capabilities and engineering effort available for diagnostic purposes is limited. It is, in practice, impossible to develop diagnostic algorithms capable of detecting many different kinds of faults that would be applicable to a wide range of vehicle configurations and usage patterns. However, it is now becoming feasible to obtain and analyse on-board data on vehicles as they are being used. It makes automatic data-mining methods an attractive alternative, since they are capable of adapting themselves to specific vehicle configurations and usage. In order to be useful, though, such methods need to be able to detect interesting relations between a large number of available signals. This paper presents an unsupervised method for discovering useful relations between measured signals in a Volvo truck, both during normal operations and when a fault has occurred. The interesting relationships are found in a two-step procedure. In the first step, we identify a set of “good” models, by establishing an MSE threshold over the complete data set. In the second step, we estimate model parameters over time, in order to capture the dynamic behaviour of the system. We use two different approaches here, the LASSO method and the Recursive Least Squares filter. The usefulness of obtained relations is then evaluated using supervised learning to separate different classes of faults.</p>  +
<p>The behavior of a district heating (DH) substation has a social and operational context. The social context comes from its general usage pattern and personal requirements of building inhabitants. The operational context comes from its configuration settings which considers both the weather conditions and social requirements. The parameter estimating thermal energy demand response with respect to change in outdoor temperature conditions along with the strength of the relationship between these variables are two important measures of operational efficiency of a substation. In practice, they can be estimated using a regression model where the slope parameter measures the average response and R2 measures the strength of the relationship. These measures are also important from a monitoring perspective. However, factors related to the social context of a building and the presence of unexplained outliers can make the estimation of these measures a challenging task. Social context of a data point in DH, in many cases appears as an outlier. Data efficiency is also required if these measures are to be estimated in a timely manner. Under these circumstances, methods that can isolate and reduce the effect of outliers in a principled and data efficient manner are required. We therefore propose to use Huber regression, a robust method based on M-estimator type loss function. This method can not only identify possible outliers present in the data of each substation but also reduce their effect on the estimated slope parameter. Moreover, substations that are comparable according to certain criteria, for instance, those with almost identical energy demand levels, should have relatively similar slopes. This provides an opportunity to observe deviating substations under the assumption that comparable substations should show homogeneity in their behavior. Furthermore, the slope parameter can be compared across time to observe if the dynamics of a substation has changed. Our analysis shows that Huber regression in combination with ordinary least squares can provide reliable estimates on the operational efficiency of DH substations. © 2018 The Authors. Published by Elsevier Ltd.</p>  
<p>This paper is concerned with kernel-based techniques for automatedcategorization of laryngeal colour image sequences obtained by videolaryngostroboscopy. Features used to characterize a laryngeal imageare given by the kernel principal components computed using the$N$-vector of the 3-D colour histogram. The least squares supportvector machine (LS-SVM) is designed for categorizing an imagesequence (video) into the healthy, cancerous and noncancerous classes. The kernel function employed by theLS-SVM is defined over a pair of matrices, rather than over a pairof vectors. The classification accuracy of over 85% was obtainedwhen testing the developed tools on data recorded during routinelaryngeal videostroboscopy.</p>  +
<p>In this paper a laser scanner based approach for simultaneous detection and tracking of people in an indoor environment is presented. The operation of an autonomous truck, for transporting paper reels in a dynamic environment shared with humans, is considered as the application setting for this work. Here, a human leg detection procedure and an Extended Kalman Filter (EKF) based tracking method are employed for real-time performance. Several experiments with different data sets collected from an autonomous forklift truck in a paper mill warehouse have been performed in an offline situation. The results show how the system is able to detect and track multiple moving people. ©2014 IEEE.</p>  +
<p><strong>Background</strong>: Aggressive treatment at end-of-life (EOL) can be traumatic to patients and may not add clinical benefit. Absent an accurate prognosis of death, individual level biases may prevent timely discussions about the scope of EOL care and patients are at risk of being subject to care against their desire. The aim of this work is to develop predictive algorithms for identifying patients at EOL, with clinically meaningful discriminatory power.</p><p><strong>Methods</strong>: Retrospective, population-based study of patients utilizing emergency departments (EDs) in Sweden, Europe. Electronic health records (EHRs) were used to train supervised learning algorithms to predict all-cause mortality within 30 days following ED discharge. Algorithm performance was validated out of sample on EHRs from a separate hospital, to which the algorithms were previously unexposed.</p><p><strong>Results</strong>: Of 65,776 visits in the development set, 136 (0.21%) experienced the outcome. The algorithm with highest discrimination attained ROC-AUC 0.945 (95% CI 0.933 - 0.956), with sensitivity 0.869 (95% CI 0.802, 0.931) and specificity 0.858 (0.855, 0.860) on the validation set.</p><p><strong>Conclusions</strong>: Multiple algorithms displayed excellent discrimination and outperformed available indexes for short-term mortality prediction. The practical utility of the algorithms increases as the required data were captured electronically and did not require de novo data collection.</p><p><strong>Trial registration number: </strong>Not applicable.</p>  +
<p>We present a stochastic learning algorithm for neural networks. The algorithm does not make any assumptions about transfer functions of individual neurons and does not depend on a functional form of a performance measure. The algorithm uses a random step of varying size to adapt weights. The average size of the step decreases during learning. The large steps enable the algorithm to jump over local maxima/minima, while the small ones ensure convergence in a local area. We investigate convergence properties of the proposed algorithm as well as test the algorithm on four supervised and unsupervised learning problems. We have found a superiority of this algorithm compared to several known algorithms when testing them on generated as well as real data.</p>  +
<p>The traditional paradigm for developing machine prognostics usually relies on generalization from data acquired in experiments under controlled conditions prior to deployment of the equipment. Detecting or predicting failures and estimating machine health in this way assumes that future field data will have a very similar distribution to the experiment data. However, many complex machines operate under dynamic environmental conditions and are used in many different ways. This makes collecting comprehensive data very challenging, and the assumption that pre-deployment data and post-deployment data follow very similar distributions is unlikely to hold. Transfer Learning (TL) refers to methods for transferring knowledge learned in one setting (the source domain) to another setting (the target domain). In this work, we present a TL method for predicting Remaining Useful Life (RUL) of equipment, under the assumption that labels are available only for the source domain and not the target domain. This setting corresponds to generalizing from a limited number of run-to-failure experiments performed prior to deployment into making prognostics with data coming from deployed equipment that is being used under multiple new operating conditions and experiencing previously unseen faults. We employ a deviation detection method, Consensus Self-Organizing Models (COSMO), to create transferable features for building the RUL regression model. These features capture how different target equipment is in comparison to its peers. The efficiency of the proposed TL method is demonstrated using the NASA Turbofan Engine Degradation Simulation Data Set. Models using the COSMO transferable features show better performance than other methods on predicting RUL when the target domain is more complex than the source domain.</p>  +
<p>The traditional paradigm for developing machine prognostics usually relies on generalization from data acquired in experiments under controlled conditions prior to deployment of the equipment. Detecting or predicting failures and estimating machine health in this way assumes that future field data will have a very similar distribution to the experiment data. However, many complex machines operate under dynamic environmental conditions and are used in many different ways. This makes collecting comprehensive data very challenging, and the assumption that pre-deployment data and post-deployment data follow very similar distributions is unlikely to hold. Transfer Learning (TL) refers to methods for transferring knowledge learned in one setting (the source domain) to another setting (the target domain). In this work, we present a TL method for predicting Remaining Useful Life (RUL) of equipment, under the assumption that labels are available only for the source domain and not the target domain. This setting corresponds to generalizing from a limited number of run-to-failure experiments performed prior to deployment into making prognostics with data coming from deployed equipment that is being used under multiple new operating conditions and experiencing previously unseen faults. We employ a deviation detection method, Consensus Self-Organizing Models (COSMO), to create transferable features for building the RUL regression model. These features capture how different target equipment is in comparison to its peers. The efficiency of the proposed TL method is demonstrated using the NASA Turbofan Engine Degradation Simulation Data Set. Models using the COSMO transferable features show better performance than other methods on predicting RUL when the target domain is more complex than the source domain.</p>  +
U
<p>Trucks are designed, configured and marketed for various working environments. There lies a concern whether trucks are used as intended by the manufacturer, as usage may impact the longevity, efficiency and productivity of the trucks.</p><p>In this paper we propose a framework that aims to extract costumers' vehicle behaviours from LVD in order to evaluate whether they align with vehicle configurations, so-called GTA parameters. GMMs are employed to cluster and classify various vehicle behaviors from the LVD. RBML was applied on the clusters to examine whether vehicle behaviors follow the GTA configuration. Particularly, we propose an approach based on studying associations that is able to extract insights on whether the trucks are used as intended. Experimental results shown that while for the vast majority of the trucks' behaviors seemingly follows their GTA configuration, there are also interesting outliers that warrant further analysis.</p>  +
<p>Trucks are designed, configured and marketed for various working environments. There lies a concern whether trucks are used as intended by the manufacturer, as usage may impact the longevity, efficiency and productivity of the trucks.</p><p>In this paper we propose a framework that aims to extract costumers' vehicle behaviours from LVD in order to evaluate whether they align with vehicle configurations, so-called GTA parameters. GMMs are employed to cluster and classify various vehicle behaviors from the LVD. RBML was applied on the clusters to examine whether vehicle behaviors follow the GTA configuration. Particularly, we propose an approach based on studying associations that is able to extract insights on whether the trucks are used as intended. Experimental results shown that while for the vast majority of the trucks' behaviors seemingly follows their GTA configuration, there are also interesting outliers that warrant further analysis.</p>  +
<p>This paper introduces an unsupervised method for the classification of discrete rovers’ slip events based on proprioceptive signals. In particular, the method is able to automatically discover and track various degrees of slip (i.e. low slip, moderate slip, high slip). The proposed method is based on aggregating the data over time, since high level concepts, such as high and low slip, are concepts that are dependent on longer time perspectives. Different features and subsets of the data have been identified leading to a proper clustering, interpreting those clusters as initial models of the prospective concepts. Bayesian tracking has been used in order to continuously improve the parameters of these models, based on the new data. Two real datasets are used to validate the proposed approach in comparison to other known unsupervised and supervised machine learning methods. The first dataset is collected by a single-wheel testbed available at MIT. The second dataset was collected by means of a planetary exploration rover in real off-road conditions. Experiments prove that the proposed method is more accurate (up to 86% of accuracy vs. 80% for K-means) in discovering various levels of slip while being fully unsupervised (no need for hand-labeled data for training).</p>  +
<p>We present an option for colour image segmentation applied to printing quality assessment in offset lithographic printing by measuring an average ink dot size in halftone pictures. The segmentation is accomplished in two stages through classification of image pixels. In the first stage, rough image segmentation is performed. The results of the first segmentation stage are then utilized to collect a balanced training data set for learning refined parameters of the decision rules. The developed software is successfully used in a printing shop to assess the ink dot size on paper and printing plates.</p>  +
<p>A new approach to improve fault detection of electrical machines is proposed. The increased usage of electrical machines and the higher demands on their availability requires new approaches to fault detection. In this paper we demonstrate that it is possible to detect a certain fault on a PMSM (Permanent Magnet Synchronous Machine) by using multiple similar motors, or a single motor, to build a norm of expected behavior by monitoring signal relations. This means that the machine is monitored in an unsupervised way. Four levels of an increased temperature in the rotor magnets have been investigated. The results are based on simulations and the signals used (for relation measurements) are available in a real motor installation. The method shows promising results in detecting two of the temperature faults. © 2011 IEEE.</p>  +