Publications:Selecting features from multiple feature sets for SVM committee-based screening of human larynx

From ISLAB/CAISR
Revision as of 12:49, 13 March 2014 by SlawekBot (talk | contribs) (Created page with "<div style='display: none'> == Do not edit this section == </div> {{PublicationSetupTemplate|Author=Antanas Verikas, Adas Gelzinis, Marina Kovalenko, Marija Bacauskiene |PID=3...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Do not edit this section

Property "Publisher" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user.

Keep all hand-made modifications below

Title Selecting features from multiple feature sets for SVM committee-based screening of human larynx
Author
Year 2010
PublicationType Journal Paper
Journal Expert systems with applications
HostPublication
Conference
DOI http://dx.doi.org/10.1016/j.eswa.2010.03.025
Diva url http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:345730
Abstract

This paper is concerned with a two stage procedure for designing a sequential SVM committee and selecting features for the committee from multiple feature sets. It is assumed that features of one type comprise one feature set. Selection of both features and hyper-parameters of SVM classifiers comprising the committee is integrated into one learning process based on genetic search. The designing process focuses on feature selection for pair-wise classification implemented by the SVM. In the first stage, a series of pair-wise SVM are designed starting from the original feature sets as well as from sets created by simple random selection from the original ones. Outputs of the SVM are then converted into probabilities and used as inputs to the second stage SVM. When testing the technique in a three-class classification problem of voice data, a statistically significant improvement in classification accuracy was obtained if compared to parallel committees. The number of feature types and features selected for the pair-wise classification are class specific.