Publications:Selecting neural networks for a committee decision

From ISLAB/CAISR
Revision as of 12:49, 13 March 2014 by SlawekBot (talk | contribs) (Created page with "<div style='display: none'> == Do not edit this section == </div> {{PublicationSetupTemplate|Author=Antanas Verikas, Arunas Lipnickas, Kerstin Malmqvist |PID=285853 |Name=Veri...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Do not edit this section

Property "Publisher" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user. Property "Author" has a restricted application area and cannot be used as annotation property by a user.

Keep all hand-made modifications below

Title Selecting neural networks for a committee decision
Author
Year 2002
PublicationType Journal Paper
Journal International Journal of Neural Systems
HostPublication
Conference
DOI http://dx.doi.org/10.1142/S0129065702001229
Diva url http://hh.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:285853
Abstract

To improve recognition results, decisions of multiple neural networks can be aggregated into a committee decision. In contrast to the ordinary approach of utilizing all neural networks available to make a committee decision, we propose creating adaptive committees, which are specific for each input data point. A prediction network is used to identify classification neural networks to be fused for making a committee decision about a given input data point. The jth output value of the prediction network expresses the expectation level that the jth classification neural network will make a correct decision about the class label of a given input data point. The proposed technique is tested in three aggregation schemes, namely majority vote, averaging, and aggregation by the median rule and compared with the ordinary neural networks fusion approach. The effectiveness of the approach is demonstrated on two artificial and three real data sets.