P | |
B —

Y kv ==}

Bootstrapping Compiler Generators
from Partial Evaluators

Robert Gliick
University of Copenhagen

IFIP WG 2.11 Meeting
Halmstad Sweden
2012

Programs as Data Objects

Build programs that treat programs as data objects:
* Analyze, transform & generate programs
* Manipulate programs by means of programs

Three basic operations on programs: [Gliick Klimov'94]
1. Specialize: e.g. partial evaluation

2. Invert: e.g. reversible computation

3. Compose: e.g. deforestation, slicing

A Programs are semantically the most
complex data structure in the computer! 3

More formally: What is a Specializer?

Program specialization:

Terminology:
r = [s](px) s ... specializer
[y = [plx,y) r ... residual program

Characteristic equation:

[[sl(P.) Ty = [PI(xY)
T, -5
2 stages 1 stage

Note: specializer s is itself a two-argument program.

Today’s Plan

Part 1: Theory
* Brief review of partial evaluation
» The new bootstrapping technique

Part 2: Practice
* An online compiler generator for recursive Flowchart
» Experimental validation & operational properties

This talk reports:
» Bootstrapping can be a viable alternative
to the 3rd Futamura projection.

Brief Review of Partial Evaluation

» Partial evaluation: technique to specialize programs.
Xy y

specializer
out — “ out

» Partial evaluators were designed & implemented.
Scheme, Prolog, ML, C, Fortran, Java, ...

 Literature: standard book [JonesGomardSestoft'93]. —

* Most intense research phase from mid 80ies to end 90ies.

» Cornerstone are the 3 Futamura projections [Futamura’71].
4

ProgromGeneraion

What is a Compiler Generator?

Program staging: Terminology:
g = [cog] p cog ... compiler generator
[[glx]y = [P1(x,y) g ... generating extension
Ershov'77
Characteristic equation:
[[[eoglpIx]y = [pl(xy)
3 st;ges 1 svtage

Note: program p staged wrt. implicit division: x known before y.
cog is a program-generator generator. 6

New: Staging a Specializer

Characteristic equation:

[[lcoglplx]ly = [pl(xy) = out
Special case:
[[[cogls]s]ls = [s](s,s) = cog™
Pl [N
3 stages 1 stage
bootstrapping 3rd Futamura projection
(double self-application)
Klimov Romanenko’87 Futamura’'71
Gliick Klimov'95, Gliick'09 Turchin’77, Ershov'78 theory
this talk Jones et al.’85 practice 7

Partial Bootstrapping

Two important properties:

1. Last two cog” and cog” are functionally equivalent:

19

[cogl = [cog™]

2. All three cog’, cog”, cog”” produce functionally
equivalent generating extensions:

9y

[[cogTp]l = [[cog”lp] = [[cog™]p]

= |tis not always necessary to perform a full bootstrap.

Q: Can we bootstrap compiler generators in 1 or 2 steps
that are “good enough” for practical use ?

Bootstrapping vs. Futamura Projections

« Futamura’s technique: “all-or-nothing”: unless double
self-application is successful, no compiler generator.

+ Bootstrapping: can stop generation process at any
step (1,2,3) and obtain a working compiler generator.

Three bootstrapping steps:

— 1 step: specializer need not be self-applicable (e.g. online);
source language need not be Turing-complete;
an advantage for DSL (e.g. video device drivers);

— 2 steps: no loss of transformation strength.
— 3 steps: alternative to Futamura’s technique [Futamura’71,73].
12

Full Bootstrapping

Summary:
[llcoglsisls = [sl(s;s) = cog

T

bootstrapping 3rd Futamura projection

Full bootstrapping:

1. cog = [cog] s
2. cog” = [cog] s
3. cog” = [cog”] s
4. cog” = [cog”]s self-generation

Properties of the Bootstrapping Technique

self-generation

s
cog —

“3rd FMP

produce functionally equivalent ~ functionally equivalent

generating extensions compiler generators

Gliick'09

How to Get Started?

2nd Part of Talk

How to get started?

Chicken-and-Egg Dilemma

Two ways to obtain the initial compiler generator:

1. Write cog by hand.
[Beckman et al.’75, Holst Launchburg’91, Birkedal Welinder'94, ...]

2. Generate cog by specializer (3rd Futamura projection).
Requires a self-applicable program specializer.
[Futamura’71, Jones et al.’85, Romaneko’90, ...]

14
Three Block Generators
(1-0 [(if (done? (1ist 'ack m) code) 2-0 3-0))
(3-0 (code := (newblock code (list 'ack m))) (goto 4-0))
(4-0[(Gf (= m 0) 4-1 4-2))
(4-1 (return (o code['(return (+ n D))))
(4-2 (code := (call 1-1 m code))
(code := (call 1-2 m code))
(return (o code [Iist 'if '(= n 0) (Iist 'ack0 m) (Iist 'ackl m))D))
(1-1 |(if (done? (1list 'ackO m) code) 2-0 3-1))
(3-1 (code := (newblock code (list 'ackO m))) (goto 4-3))
(4-3 |
(return (o code [(1ist 'return (1ift n)))))
(1-2 [(if (done? (list 'ackl m) code) 2-0 3-2)
(3-2 (code := (newblock code (list 'acki m))) (goto 4-4))
(4-4 (code (o code ["(m := (= n 1))
(code (call 1-0 m code))
(code := (o code[(1ist 'm ':= (1ist 'call (1ist 'ack m) 'm))))
(m G m 1))
(code := (call 1-0 m code))
(code := (o code [(Iist 'm ':= (1ist 'call (list 'ack m) 'm))))
(return (o code [(return n)})) 16
Running the Generating Extension
Static value for m
et Ackermann
g generating extension
Residual program l
(@ (ack-2) (ack-1 (if (= n 0) ackO-1 acki-1))
((ack-2 (if (= n 0) ack0-2 ack1-2)) (ackO-1 (return 2))
(ack0-2 (return 3)) (acki-1 (n := (- n 1))
(ack1i-2 (n := (- n 1)) (n := (call ack-1 n))
(n (call ack-2 n)) (n := (call ack-0 n))
(n := (call ack-1 n)) (return n))
(return n)) (ack-0 (return (+ n 1)))))

Ackermann Function in Flowchart
n+1 ifm=0
A(m,n) =4¢ A(m—-1,1) ifn=0
A(m —1,A(m,n—1)) otherwise

Division:
m=static n=dynamic
((m]n} (ack)
((ack (if (=[m]0) done next)) Ershov'78
(next (if (=[n]0) ackO acki))
(done (return (+ n 1)))
(ack0 constant assignment: static n
(goto ack2))
(ackl (n := (- n 1))
[(n := (call ack[m]n))]
(goto ack2))
(ack2 (m := (- m 1))
[(@ := (call ack m n))| [(n := (call ack[m|n))|
(return n))))

polyvariant call 15

Generating a Generating Extension

(@3 (ack) (acki (n := (- n 1))
((ack (if (= m 0) done next)) (n := (call ack m n))
(next (if (= n 0) ack0 ackil)) (goto ack2))
(done (return (+ n 1))) (ack2 (m := (- m 1))
(ack0 (n := 1) (o := (call ack m n))
(goto ack2)) (return n))))
Ackermann I
program) .
co online compiler
9 generator for FCL
Ackermann
generating extension
[= [repy—
. ende e (hander (a3 Gt “ack) (gore 1) (53 (&

code) 2-0 3-0)) -0 m code))
(st ‘ack 1)) (goto 4-0)) o

- Qist ‘eall Qst ‘ack ®) ‘W)
2 D))

110 a coded)
ode

(ist 'n ':= (st ‘call (st ‘ack ®) 'M))
0) (st *ack0 m) (List ‘acki m))) (roturn (o codo *(return m)))

‘ack0 %) code) 2-0 3-1)))

codo (118t ‘acko m)) (goto 4-3))

all 5-0 2 m) (goco 5-5))
a1l 5-0 2 m) (recumm m)

(roturn (o codo (List ‘return (11ft 1))

Online Compiler Generator in FCL

Compiler generator: Self-compiler:

3 pages of pretty-printed Flowchart program text 2

vars(e) €8k bk [1.8] = KK oot [l2,6] = Fasg (07, 8.8) =7 (oK) K by [, 5] = K
kFjmp (1T € 11 12,0] = k7 o [if € 4115 412-9] IR
;o 415 gk kolals:] ke [F(1).8] =K alsck ek
E by [0 = K l=L16 - - T .
(@ €8 PSS hongs © =W FFstocs 0] = K Tl Lol =k Koy L] = F
code := call 1110 VLo gk kb [LO] =K V=110
e Fmp [1 8 "o = Iy p T1f (done? [code
k bmp [if € 11 12,8] = & ;:::m (c‘:(l“;e jraf't; i Kby 10 = Ko 113 41 (d T code) 2 31
& =els
F Py [roturn ¢, 8] = k o [return (o code return)]
kb [P(1),0] = K

313 : code := (newblock code I'); goto 415
Ty lg0t0 L] = F

Bootstrapping
Fug (0%, 8K =° (0L K) K by [5,8] = K Last Part of Talk
FFo (@ 3.0 = K
415 ¢k kol[al8:] by [(1),6] =K alsck 118k
& Fotock [1,0] = K EFoiock 0] = kK Fpoy [L.0] =
115¢k kb L8] =K U=118
i 0] o [e e 33 g0 4]
See paper for formal definition. Gliick'12 22
3-Step Bootstrapping Self-Generation
cog
2.5x faster 2.1x faster
161.1:406.2 82.1:171.3
onmix
Gliick'12 ~ mix mix mix Gomard-Jones’91 onmix mix
‘ y ! 6.5x faster 5.1x faster
1.8x faster 62.5 : 406.6 33.4:171.3
93.7:171.3
. o . Partial correctness test: Perfect reproduction.
Experimental validation Of bootstrapping: Time for self-generation also indicates efficiency.
Reproduces the Gomard-Jones mix-cog [1991], but faster. Desirable: self-generation = 3x fast than 3rd FMP.
Reproduces the onmix-cog [G’12], but faster. a
Run times: CPU+GC in ms
2-Step Bootstrapping 1-Step Bootstrapping
Functionally
equivalent / . mix 33.4
mix 35.9 mix 33.4

MP-to-FCL-compilers:
functionally equivalent

int44.4

All 2nd-step compiler generators practically “good enough”
No compromise in terms of speed.

target
pi12.4
Size up to twice as large.

Are 1st-step compiler generators “good enough” ?
Depends on initial cog: scenario w/advanced initial cog.

Advantage: no self-application of new specializer required.
35

MP-interpreter: Sestoft'86, Mogensen’'88

36

32

Main Results

Standard PE is strong enough for bootstrapping.
Bootstrapping is a viable alternative to the 3.FMP.
3-step bootstrapping produces the exact same
programs and can be faster than 3.FMP.

1 and 2-step can produce “good enough” compiler
generators (not possible with 3.FMP).

Reproduced the 1991-Gomard-Jones cog, but faster.

37

References

Bootstrapping compiler generators:

» Gliick R., Bootstrapping compiler generators from partial evaluators.
Clarke E.M., et al. (eds.), Perspectives of System Informatics.
Proceedings. LNCS 7162, 2012.

Self-applicable online partial evaluation:

+ Glick R., A self-applicable online partial evaluator for recursive
flowchart languages. Software - Practice and Experience, 42(6), 2012.

Self-generating specializers:
» Gliick R., Self-generating program specializers.
Information Processing Letters, 110(17), 2010.

