Julia’s adventures with Why3

Julia Lawall, Gilles Muller (Inria/LIP6), Virginia Aponte (CNAM),
and others

April 2019



Problem setting

Jean-Pierre Lozi, Baptiste Lepers, Justin R. Funston,
Fabien Gaud, Vivien Quéma, Alexandra Fedorova:
The Linux scheduler: a decade of wasted cores.
EuroSys 2016: 1:1-1:16

Work conservation: Various bugs in the Linux kernel scheduler
(load balancer) made it possible that some cores could be
overloaded while other cores are idle.

- Wastes energy.
- May increase latency.

-+ Bugs hard to detect and linger for years.



How can we prove that these bugs will never occur?

- Scheduler code is written in C.

- Concepts not well isolated from implementation details.
- Over 20 000 LOC a few years ago, more now.

- Concurrency.



DSL approach

Domain-specific syntax

Domain-specific library




DSL approach

Domain-specific syntax

|

[Domain-speciﬁc compiler}

l

C code 0S

l

Domain-specific library




Our case: Ipanema

Extension of Bossa single-core scheduling DSL to multicore.

Domain-specific declarations:

thread = { int load; time vruntime; system core cpu;}
core = {
threads = {
shared RUNNING thread current;
shared READY set<thread> ready: order = {lowest vruntime};
R
set<domain> sd;
time min_vruntime;
system shared int cload;



Our case: Ipanema

Domain-specific operations critical for work conservation:

steal(core dst) = {
can_steal_core(core src, core dst) {
(valid(src.current) ? 1 : 0) + count(src.ready) > 1
} => stealable_cores
do {
select_core() {
first(stealable_cores order = {highest cload})
} => src
steal_thread(core dst, thread t) {
if (src.cload - dst.cload > t.load) {
t.vruntime -= src.min_vruntime;
t.vruntime += dst.min_vruntime;
t => dst.ready;
}
} until (src.cload == dst.cload);
} until (runnable(dst) != 0);



Observations: Traditional motivations for a DSL

DSL makes it easy to script complex processing

- = for state changes

- first/highest for selecting prioritized items in a list.

DSL controls how operations are composed, enabling
verifications

- = may allow only certain kinds of state changes,
depending on the context (block vs unblock event)



Generated code (extract)

if ((busiest->cload - _fresh_23) > t->load) {
t->vruntime = t->vruntime - busiest->min_vruntime;
t->vruntime = t->vruntime + _fresh_24;
list_add(&pos->ipanema.ipa_tasks, &ready_tasks);
ipa_change_queue_and_core(t, NULL, MIGRATING_STATE,

thief);

busiest->cload = busiest->cload - t->load;
_fresh_23 = _fresh_23 + t->load;



Generated code (extract)

if ((busiest->cload - _fresh_23) > t->load) {
t->vruntime = t->vruntime - busiest->min_vruntime;
t->vruntime = t->vruntime + _fresh_24;
list_add(&pos->ipanema.ipa_tasks, &ready_tasks);
ipa_change_queue_and_core(t, NULL, MIGRATING_STATE,

thief);

busiest->cload = busiest->cload - t->load;
_fresh_23 = _fresh_23 + t->load;

10



Observations: Our motivation for a DSL

- DSL compilation enforces the barrier between the
scheduling operations (policy) and the library
(mechanism).

- C code structure is predictable.

- Mechanized verification of the algorithmic properties of
the code that is actually executed becomes possible.

- Enables targeting an existing OS.

n



Current status

Ipanema policy

Anema compmA

C kernel module whyML code Proof library
Event interface
Abstraction library
Linux kernel Proofs

12



Why Why3?

Imperative programming language based on ML.

- ML is not C, but permits line by line translation.
- Avoid pointer correctness issues, focus on the algorithm.
- Pointer correctness ensured by the DSL/library.

Interface to many SMT solvers

- We mostly used Alt-Ergo and CVC4

Easy-to-use, entertaining IDE

- Moderately fast
- Actively supported

13



Why not Coq?

Tedious to construct the verification conditions.

- Why3 takes care of what to prove automatically.

- Why3 allows interfacing with Coq, but the resulting proofs
are very fragile.

Still, Cog would provide control over what proof steps to take

- Solvers may take undesirable directions incurring a huge
performance overhead.

14



Another problem with solvers

false — anything

15



Another problem with solvers

false — anything

- Solvers don't always discover this shortcut.

- Solvers don't give any feedback when they do discover
this shortcut.

- Small thoughtless changes can introduce this issue at any
time.

15



Another problem with solvers

false — anything

- Solvers don't always discover this shortcut.

- Solvers don't give any feedback when they do discover
this shortcut.

- Small thoughtless changes can introduce this issue at any
time.

- Why3 smoke detection can help.

15



Architecture

Abstraction library: proved once

List Distinct Disjoint
Why3 27 LOC 69 LOC
1
Threads
151 LOC
t
State Summatrix BinPredMatrix
103 LOC 135 LOC 145 LOC
£ N A e
AState MState Boolvec
198 LOC 400 LOC 69 LOC
N A /
System
856 LOC




Architecture

Policy-specific code: proved once per policy

CFS types ULE types
DSL code 95 LOC 96 LOC
Y. =Y
Proof skeleton
Compiled code 263 LOC

- Variants without and with concurrent scheduling events.



Proving work conservation (non concurrency case)

If any core is idle, no core is overloaded:

forall co:int. idle p.cores co —
forall col:int. not(overloaded p.cores col)



Proving Work Conservation (non concurrency case)

If any core is idle, no core is overloaded:

forall co:int. idle p.cores co —
forall col:int. not(overloaded p.cores col)

We have also proved Weak Work Conservation that takes into
account the impact of concurrent scheduling events.

19



Demo

20



Assessment and Conclusion

- 6.5 minutes proving time on 2 cores

- Policy-developer facing code (CFS types and ULE types)
proved fully automatically

- One click, no asserts.

- More labor needed for library and proof skeleton.
- Asserts, transformations, choice of solver, etc.

- Robust to the introduction of small policy variants.

- Fully proved (weak) work conserving load balancing
algorithms.

21



