
Julia’s adventures with Why3

Julia Lawall, Gilles Muller (Inria/LIP6), Virginia Aponte (CNAM),
and others
April 2019

1



Problem setting

Jean-Pierre Lozi, Baptiste Lepers, Justin R. Funston,
Fabien Gaud, Vivien Quéma, Alexandra Fedorova:
The Linux scheduler: a decade of wasted cores.
EuroSys 2016: 1:1-1:16

Work conservation: Various bugs in the Linux kernel scheduler
(load balancer) made it possible that some cores could be
overloaded while other cores are idle.

• Wastes energy.
• May increase latency.
• Bugs hard to detect and linger for years.

2



Verification?

How can we prove that these bugs will never occur?

• Scheduler code is written in C.
• Concepts not well isolated from implementation details.
• Over 20 000 LOC a few years ago, more now.
• Concurrency.

3



DSL approach

Domain-specific syntax

Domain-specific library

4



DSL approach

Domain-specific syntax

Domain-specific compiler

C code OS

Domain-specific library

5



Our case: Ipanema

Extension of Bossa single-core scheduling DSL to multicore.

Domain-specific declarations:

thread = { int load; time vruntime; system core cpu;}
core = {

threads = {
shared RUNNING thread current;
shared READY set<thread> ready: order = {lowest vruntime};

... };
set<domain> sd;
time min_vruntime;
system shared int cload; ...

}

6



Our case: Ipanema

Domain-specific operations critical for work conservation:
steal(core dst) = {

can_steal_core(core src, core dst) {
(valid(src.current) ? 1 : 0) + count(src.ready) > 1

} => stealable_cores
do {

select_core() {
first(stealable_cores order = {highest cload})

} => src
steal_thread(core dst, thread t) {

if (src.cload - dst.cload > t.load) {
t.vruntime -= src.min_vruntime;
t.vruntime += dst.min_vruntime;
t => dst.ready;

}
} until (src.cload == dst.cload);

} until (runnable(dst) != 0);
}
...

7



Observations: Traditional motivations for a DSL

DSL makes it easy to script complex processing

• ⇒ for state changes
• first/highest for selecting prioritized items in a list.

DSL controls how operations are composed, enabling
verifications

• ⇒ may allow only certain kinds of state changes,
depending on the context (block vs unblock event)

8



Generated code (extract)

if ((busiest->cload - _fresh_23) > t->load) {
t->vruntime = t->vruntime - busiest->min_vruntime;
t->vruntime = t->vruntime + _fresh_24;
list_add(&pos->ipanema.ipa_tasks, &ready_tasks);
ipa_change_queue_and_core(t, NULL, MIGRATING_STATE,

thief);
busiest->cload = busiest->cload - t->load;
_fresh_23 = _fresh_23 + t->load;

}

9



Generated code (extract)

if ((busiest->cload - _fresh_23) > t->load) {
t->vruntime = t->vruntime - busiest->min_vruntime;
t->vruntime = t->vruntime + _fresh_24;
list_add(&pos->ipanema.ipa_tasks, &ready_tasks);
ipa_change_queue_and_core(t, NULL, MIGRATING_STATE,

thief);
busiest->cload = busiest->cload - t->load;
_fresh_23 = _fresh_23 + t->load;

}

10



Observations: Our motivation for a DSL

• DSL compilation enforces the barrier between the
scheduling operations (policy) and the library
(mechanism).

• C code structure is predictable.

• Mechanized verification of the algorithmic properties of
the code that is actually executed becomes possible.

• Enables targeting an existing OS.

11



Current status

Ipanema compiler

Event interface
why3

Ipanema policy

C kernel module whyML code Proof library

ProofsLinux kernel

Abstraction library

12



Why Why3?

Imperative programming language based on ML.

• ML is not C, but permits line by line translation.
• Avoid pointer correctness issues, focus on the algorithm.
• Pointer correctness ensured by the DSL/library.

Interface to many SMT solvers

• We mostly used Alt-Ergo and CVC4

Easy-to-use, entertaining IDE

• Moderately fast
• Actively supported

13



Why not Coq?

Tedious to construct the verification conditions.

• Why3 takes care of what to prove automatically.
• Why3 allows interfacing with Coq, but the resulting proofs
are very fragile.

Still, Coq would provide control over what proof steps to take

• Solvers may take undesirable directions incurring a huge
performance overhead.

14



Another problem with solvers

false→ anything

• Solvers don’t always discover this shortcut.
• Solvers don’t give any feedback when they do discover
this shortcut.

• Small thoughtless changes can introduce this issue at any
time.

• Why3 smoke detection can help.

15



Another problem with solvers

false→ anything

• Solvers don’t always discover this shortcut.
• Solvers don’t give any feedback when they do discover
this shortcut.

• Small thoughtless changes can introduce this issue at any
time.

• Why3 smoke detection can help.

15



Another problem with solvers

false→ anything

• Solvers don’t always discover this shortcut.
• Solvers don’t give any feedback when they do discover
this shortcut.

• Small thoughtless changes can introduce this issue at any
time.

• Why3 smoke detection can help.

15



Architecture

Abstraction library: proved once

List
Why3

Distinct
27 LOC

Disjoint
69 LOC

Threads
151 LOC

State
103 LOC

Summatrix
135 LOC

BinPredMatrix
145 LOC

AState
198 LOC

MState
400 LOC

Boolvec
69 LOC

System
856 LOC

16



Architecture

Policy-specific code: proved once per policy

Proof skeleton
263 LOC

CFS types
95 LOC

ULE types
96 LOCDSL code

Compiled code

• Variants without and with concurrent scheduling events.

17



Proving work conservation (non concurrency case)

If any core is idle, no core is overloaded:

forall co:int. idle p.cores co →
forall co1:int. not(overloaded p.cores co1)

We have also proved weak work conservation that takes into
account the impact of concurrent scheduling events.

18



Proving Work Conservation (non concurrency case)

If any core is idle, no core is overloaded:

forall co:int. idle p.cores co →
forall co1:int. not(overloaded p.cores co1)

We have also proved Weak Work Conservation that takes into
account the impact of concurrent scheduling events.

19



Demo

20



Assessment and Conclusion

• 6.5 minutes proving time on 2 cores

• Policy-developer facing code (CFS types and ULE types)
proved fully automatically
– One click, no asserts.

• More labor needed for library and proof skeleton.
– Asserts, transformations, choice of solver, etc.

• Robust to the introduction of small policy variants.

• Fully proved (weak) work conserving load balancing
algorithms.

21


