
Semantic Modularization Techniques
in Practice: A TAPL case study

Bruno C. d. S. Oliveira
Joint work with Weixin Zhang, Haoyuan Zhang and Huang Li

July 17, 2017

1

Text 2

EVF: An Extensible and Expressive Visitor
Framework for Programming Language
Reuse

Weixin Zhang and Bruno C. d. S. Oliveira

(ECOOP 2017)

Type-safe Modular Parsing

Haoyuan Zhang, Huang Li and Bruno C.
d. S. Oliveira

Submitted

This Talk
▸ Presents work on semantic modularity techniques based

on variants of Object Algebras/Modular Visitors;

▸ Showing that such techniques can scale beyond tiny
problems (such as Wadler’s Expression Problem);

▸ Case studies that reimplement “Types and Programming
Languages” (TAPL) interpreters using such semantically
modular techniques. Covers: semantics and parsing;

▸ Not in the talk: I will not cover in detail the coding
techniques themselves. Rather I’ll focus on the case study
results.

3

Motivation
▸ New PLs/DSLs are needed; existing PLs are evolving all the time

▸ However, creating and maintaining a PL is hard

▸ syntax, semantics, tools …

▸ implementation effort

▸ expert knowledge

▸ PLs share a lot of features

▸ variable declarations, arithmetic operations …

▸ But it is hard to materialize conceptual reuse into software
engineering reuse

4

Language Components

5

Evaluation Printing

ARITHMETICS LOGICS LAMBDAS …Components

LAMBDASARITHMETICS

Evaluation Printing

NEW SYNTAX

New Semantics

Target PL

▸ Developing PLs via composing language components with high
reusability and extensibility

▸ high reusability reduces the initial effort

▸ high extensibility reduces the effort of change 

Text

Modularisation Techniques

6

Approaches to Modularity: Copy & Paste

▸The most widely used approach in practice!

▸pros: extremely easy!

▸cons: code duplication

▸cons: synchronisation problem/maintenance/
evolution

▸ hard do synchronise changes across copies

7

Approaches to Modularity: Syntactic Modularity

▸Quite popular in Language Workbenches;
Software-Product Lines tools

▸Examples: Attribute grammar systems;
ASF+SDF; Spoofax; Monticore

▸pros: no code duplication

▸pros: implementable with relatively simple
meta-programming techniques (textual/
source-code composition); and/or DSLs

8

Approaches to Modularity: Syntactic Modularity

▸cons: lacks some desirable properties:

▸modular type-checking (consequently
less IDE support)

▸separate compilation

▸harder to provide good error messages

9

Approaches to Modularity: Semantic Modularity

▸Typically used as design patterns in languages with
reasonably expressive type systems

▸Cake Pattern (Scala); Data Types a la Carte (Haskell); Object
Algebras (Java/Scala) or Finally Tagless (Haskell/OCaml)

▸pros: naturally supported in the programming language
itself. Therefore we get (for free):

▸Modular type-checking

▸Separate compilation

▸Other goodies derived from those: better IDE support/
code-completion; reasonable error messages

10

Approaches to Modularity: Semantic Modularity

▸cons: the coding patterns can be heavy (too
many type annotations; boilerplate code;
PL support is not ideal)

▸cons: not well-proven in practice (address
small challenge problems such as the
Expression Problem (Wadler 98))

▸stereotype: can only solve small problems;
too hard to use in practice.

11

Text

Frameworks for Semantic
Modularity

12

Frameworks for Semantic Modularity: Lets fight the stereotype!

▸Our frameworks combine:

▸lightweight design patterns for modularity

▸program generation techniques to remove
boilerplate code from such design patterns

▸libraries of language components (including
parsing, and semantics)

▸ We have a few Frameworks: EVF (for Java), Parsing
Framework (for Scala), United framework (in
progress, Scala)

13

Example: The EVF Java Framework
▸ EVF is an annotation processor that generates boilerplate code

related to modular external visitors

▸ AST infrastructure

▸ traversal templates generalising Shy [Zhang et al.,
OOPSLA’15] (Think Adaptive Programming, Stratego or
Scrap your Boilerplate)

▸ Usage

▸ annotating Object Algebra interfaces (AST interface) with
@Visitor

▸ Java 8 interfaces with defaults for multiple inheritance

14

Untyped Lambda Calculus: Syntax

15

@Visitor
interface LamAlg<Exp> {
 Exp Var(String x);
 Exp Abs(String x, Exp e);
 Exp App(Exp e1, Exp e2);
 Exp Lit(int i);
 Exp Sub(Exp e1, Exp e2);
}

Annotation-based AST

Untyped Lambda Calculus: Free Variables

16

Query :: Exp → Set<String>

interface FreeVars<Exp> extends LamAlgQuery<Exp, Set<String>> {
 default Monoid<Set<String>> m() {
 return new SetMonoid<>();
 }
 default Set<String> Var(String x) {
 return Collections.singleton(x);
 }
 default Set<String> Abs(String x, Exp e) {
 return visitExp(e).stream().filter(y -> !y.equals(x))
 .collect(Collectors.toSet());
 }
}

Structure-Shy Programming
(Past work: Adaptive Programming,

Stratego, SyB)

interesting cases

boring cases

Untyped Lambda Calculus: Capture-avoiding Substitution

17

Transformation :: (Exp, String, Exp) → Exp

Dependency Usage

Dependency Declaration

interface SubstVar<Exp> extends LamAlgTransform<Exp> {
 String x();
 Exp s();
 Set<String> FV(Exp e);

 default Exp Var(String y) {
 return y.equals(x()) ? s() : alg().Var(y);
 }
 default Exp Abs(String y, Exp e) {
 if (y.equals(x())) return alg().Abs(y, e);
 if (FV(s()).contains(y)) throw new RuntimeException();
 return alg().Abs(y, visitExp(e));
 }
}

Untyped Lambda Calculus: Capture-avoiding Substitution

18

class FreeVarsImpl implements FreeVars<CExp>, LamAlgVisitor<Set<String>> {}
class SubstVarImpl implements SubstVar<CExp>, LamAlgVisitor<CExp> {
 String x;
 CExp s;
 public SubstVarImpl(String x, CExp s) { this.x = x; this.s = s; }
 public String x() { return x; }
 public CExp s() { return s; }
 public Set<String> FV(CExp e) { return new FreeVarsImpl().visitExp(e); }
 public LamAlg<CExp> alg() { return new LamAlgFactory(); }
}

Instantiation

Untyped Lambda Calculus: Instantiation and Client Code

19

LamAlgFactory alg = new LamAlgFactory();
CExp exp = alg.App(alg.Abs("y", alg.Var("y")), alg.Var("x")); // (\y.y) x
new FreeVarsImpl().visitExp(exp); // {"x"}
new SubstVarImpl("x", alg.Lit(1)).visitExp(exp); // (\y.y) 1

Client code

A Comparison with Other Implementations

20

▸ Results of EVF are better than previous frameworks based
on Object Algebras because:

▸ EVF traversals are more flexible (easy to deal with non-bottom up
traversals);

▸ EVF has better support for dependencies;

Modularity/Extensibility: Reusing the Untyped Lambda Calculus

21

@Visitor
interface ExtLamAlg<Exp> extends LamAlg<Exp> {
 Exp Bool(boolean b);
 Exp If(Exp e1, Exp e2, Exp e3);
}

▸ Reduction of implementation effort

▸ reuse from extensibility

▸ reuse from traversal templates

▸ Reduction of knowledge about PL implementations

▸ technical details are encapsulated

interface ExtFreeVars<Exp> extends ExtLamAlgQuery<Exp,Set<String>>, FreeVars<Exp> {}

interface ExtSubstVar<Exp> extends ExtLamAlgTransform<Exp>, SubstVar<Exp> {}

Text

TAPL Case Studies

22

Text

Why TAPL?

23

▸ Widely used and accepted book with a large collection of
language variants/features

▸ Several language features used in practice

▸ Implementations (in OCaml) account for different aspects:
dynamic semantics, static semantics, and parsing

▸ Non-trivial to modularize:

▸ small-step semantics

▸ non-compositional operations

▸ many dependencies 

EVF Case Study: Overview (only semantics)
▸ Refactoring a large number of non-modular interpreters

from the "Types and Programming Languages" book

24

EVF Case Study: Evaluation

25

Text

Difficulties

26

▸ Modularity

▸ no good support for modular pattern matching (bad for small step
semantics and some operations)

▸ Dependencies are hard, but manageable in EVF

▸ Drawbacks

▸ Instantiation code is boilerplate, but still has to be defined
manually. Dependencies introduce quite a bit of instantiation
boilerplate.

▸ Some coding patterns are still heavy. 

Parsing Case Study: Overview (only syntax)
▸ Refactoring a 18 parsers for non-modular interpreters from

the "Types and Programming Languages" book

27

Parsing Framework (in Scala)
▸ Parsing framework combines:

▸ design patterns for parsing (using Packrat parser combinators and Object Algebras)

▸ libraries of parsing components

▸ Multiple inheritance (traits in Scala)

▸ Supports:

▸ modular type-checking

▸ separate compilation

▸ modular (and type-safe) composition of parsers

▸ Doesn’t support:

▸ ambiguity checking (as any parser combinator based approach)

28

Text

Composition: A Simple Example

29

object	Bot	{		
		trait	Alg[E,	T]	extends	Typed.Alg[E,	T]	with	TopBot.Alg[T]		
	
		trait	Print	extends	Alg[String,	String]	with	Typed.Print	with	TopBot.Print	
	
		trait	Parse[E,	T]	extends	Typed.Parse[E,	T]	with	TopBot.Parse[T]	{	
				override	val	alg:	Alg[E,	T]		
				val	pBotE:	Parser[E]	=	pTypedE		
				val	pBotT:	Parser[T]	=	pTypedT	|||	pTopBotT		
				override	val	pE:	Parser[E]	=	pBotE		
				override	val	pT:	Parser[T]	=	pBotT		
		}	
}	

An	example	of	building	the	Bot	calculus	by	composi6on	
Component	Typed	for	simply	typed	lambda	calculus	
Component	TopBot	for	top	and	bo9om	types	

Longest match
composition

Text

Comparison

30

Text

Comparison (Performance Penalties)

31

▸ We did further experiments to identify the performance
penalties

▸ Object Algebras vs Case classes (almost no impact on
performance)

▸ longest match combinator (7% slower vs alternative combinator)

▸ Main reason for slowdown: extra method calls/
dispatching due to modularity (more indirection)

▸ Future work: Partial evaluation/staging to remove
indirections

Conclusion
▸ Semantic modularity techniques can scale reasonably well to small/

medium size languages, thanks to:

▸ multiple inheritance and OO native support for open recursion

▸ subtyping and generics

▸ type-refinement (covariant refinement of return types)

▸ annotation-based code generation

▸ Using mainstream languages is not perfect, though:

▸ Would be better to have native language support for Object Algebras/Modular
Visitors

▸ Support for some form of modular pattern matching is highly desirable

▸ Mainstream languages still have instantiation boilerplate

32

