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This Talk
▸ Presents work on semantic modularity techniques based 

on variants of Object Algebras/Modular Visitors; 

▸ Showing that such techniques can scale beyond tiny 
problems (such as Wadler’s Expression Problem); 

▸ Case studies that reimplement “Types and Programming 
Languages” (TAPL) interpreters using such semantically 
modular techniques. Covers: semantics and parsing; 

▸ Not in the talk: I will not cover in detail the coding 
techniques themselves. Rather I’ll focus on the case study 
results.
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Motivation
▸ New PLs/DSLs are needed; existing PLs are evolving all the time 

▸ However, creating and maintaining a PL is hard 

▸ syntax, semantics, tools … 

▸ implementation effort 

▸ expert knowledge 

▸ PLs share a lot of features 

▸ variable declarations, arithmetic operations … 

▸ But it is hard to materialize conceptual reuse into software 
engineering reuse
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Language Components
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Evaluation Printing

ARITHMETICS LOGICS LAMBDAS …Components

LAMBDASARITHMETICS

Evaluation Printing

NEW SYNTAX

New Semantics

Target PL

▸ Developing PLs via composing language components with high 
reusability and extensibility 

▸ high reusability reduces the initial effort 

▸ high extensibility reduces the effort of change 



Text

Modularisation Techniques
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Approaches to Modularity: Copy & Paste

▸The most widely used approach in practice! 

▸pros: extremely easy! 

▸cons: code duplication 

▸cons: synchronisation problem/maintenance/
evolution  

▸ hard do synchronise changes across copies
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Approaches to Modularity: Syntactic Modularity

▸Quite popular in Language Workbenches; 
Software-Product Lines tools 

▸Examples: Attribute grammar systems; 
ASF+SDF; Spoofax; Monticore 

▸pros: no code duplication 

▸pros: implementable with relatively simple 
meta-programming techniques (textual/
source-code composition); and/or DSLs
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Approaches to Modularity: Syntactic Modularity

▸cons: lacks some desirable properties: 

▸modular type-checking (consequently 
less IDE support) 

▸separate compilation 

▸harder to provide good error messages
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Approaches to Modularity: Semantic Modularity

▸Typically used as design patterns in languages with 
reasonably expressive type systems 

▸Cake Pattern (Scala); Data Types a la Carte (Haskell); Object 
Algebras (Java/Scala) or Finally Tagless (Haskell/OCaml) 

▸pros: naturally supported in the programming language 
itself. Therefore we get (for free): 

▸Modular type-checking 

▸Separate compilation  

▸Other goodies derived from those: better IDE support/
code-completion; reasonable error messages
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Approaches to Modularity: Semantic Modularity

▸cons: the coding patterns can be heavy (too 
many type annotations; boilerplate code; 
PL support is not ideal) 

▸cons: not well-proven in practice (address 
small challenge problems such as the 
Expression Problem (Wadler 98)) 

▸stereotype: can only solve small problems; 
too hard to use in practice.
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Text

Frameworks for Semantic 
Modularity
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Frameworks for Semantic Modularity: Lets fight the stereotype!

▸Our frameworks combine: 

▸lightweight design patterns for modularity 

▸program generation techniques to remove 
boilerplate code from such design patterns 

▸libraries of language components (including 
parsing, and semantics) 

▸ We have a few Frameworks: EVF (for Java), Parsing 
Framework (for Scala), United framework (in 
progress, Scala)
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Example: The EVF Java Framework
▸ EVF is an annotation processor that generates boilerplate code 

related to modular external visitors 

▸ AST infrastructure 

▸ traversal templates generalising Shy [Zhang et al., 
OOPSLA’15] (Think Adaptive Programming, Stratego or 
Scrap your Boilerplate) 

▸ Usage 

▸ annotating Object Algebra interfaces (AST interface) with 
@Visitor 

▸ Java 8 interfaces with defaults for multiple inheritance
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Untyped Lambda Calculus: Syntax

15

@Visitor 
interface LamAlg<Exp> {
  Exp Var(String x);
  Exp Abs(String x, Exp e);
  Exp App(Exp e1, Exp e2);
  Exp Lit(int i);
  Exp Sub(Exp e1, Exp e2);
}

Annotation-based AST



Untyped Lambda Calculus: Free Variables
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Query :: Exp → Set<String>

interface FreeVars<Exp> extends LamAlgQuery<Exp, Set<String>> {
  default Monoid<Set<String>> m() {
    return new SetMonoid<>();
  }
  default Set<String> Var(String x) {
    return Collections.singleton(x);
  }
  default Set<String> Abs(String x, Exp e) {
    return visitExp(e).stream().filter(y -> !y.equals(x))
      .collect(Collectors.toSet());
  }
}

Structure-Shy Programming 
(Past work: Adaptive Programming, 

Stratego, SyB)

interesting cases 

boring cases 



Untyped Lambda Calculus: Capture-avoiding Substitution
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Transformation :: (Exp, String, Exp) → Exp



Dependency Usage

Dependency Declaration

interface SubstVar<Exp> extends LamAlgTransform<Exp> {
  String x();
  Exp s();
  Set<String> FV(Exp e);

  default Exp Var(String y) {
    return y.equals(x()) ? s() : alg().Var(y);
  }
  default Exp Abs(String y, Exp e) {
    if (y.equals(x())) return alg().Abs(y, e);
    if (FV(s()).contains(y)) throw new RuntimeException();
    return alg().Abs(y, visitExp(e));
  }
}

Untyped Lambda Calculus: Capture-avoiding Substitution
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class FreeVarsImpl implements FreeVars<CExp>, LamAlgVisitor<Set<String>> {}
class SubstVarImpl implements SubstVar<CExp>, LamAlgVisitor<CExp> {
  String x;
  CExp s;
  public SubstVarImpl(String x, CExp s) { this.x = x; this.s = s; }
  public String x() { return x; }
  public CExp s() { return s; }
  public Set<String> FV(CExp e) { return new FreeVarsImpl().visitExp(e); }
  public LamAlg<CExp> alg() { return new LamAlgFactory(); }
}

Instantiation

Untyped Lambda Calculus: Instantiation and Client Code
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LamAlgFactory alg = new LamAlgFactory();
CExp exp = alg.App(alg.Abs("y", alg.Var("y")), alg.Var("x")); // (\y.y) x
new FreeVarsImpl().visitExp(exp); // {"x"}
new SubstVarImpl("x", alg.Lit(1)).visitExp(exp); // (\y.y) 1

Client code



A Comparison with Other Implementations

20

▸ Results of EVF are better than previous frameworks based 
on Object Algebras because: 

▸ EVF traversals are more flexible (easy to deal with non-bottom up 
traversals); 

▸ EVF has better support for dependencies;



Modularity/Extensibility: Reusing the Untyped Lambda Calculus
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@Visitor 
interface ExtLamAlg<Exp> extends LamAlg<Exp> {
  Exp Bool(boolean b);
  Exp If(Exp e1, Exp e2, Exp e3);
}

▸ Reduction of implementation effort 

▸ reuse from extensibility 

▸ reuse from traversal templates 

▸ Reduction of knowledge about PL implementations 

▸ technical details are encapsulated

interface ExtFreeVars<Exp> extends ExtLamAlgQuery<Exp,Set<String>>, FreeVars<Exp> {}

interface ExtSubstVar<Exp> extends ExtLamAlgTransform<Exp>, SubstVar<Exp> {}



Text

TAPL Case Studies
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Text

Why TAPL?
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▸ Widely used and accepted book with a large collection of 
language variants/features  

▸ Several language features used in practice 

▸ Implementations (in OCaml) account for different aspects: 
dynamic semantics, static semantics, and parsing 

▸ Non-trivial to modularize: 

▸ small-step semantics 

▸ non-compositional operations 

▸ many dependencies 



EVF Case Study: Overview (only semantics)
▸ Refactoring a large number of non-modular interpreters 

from the "Types and Programming Languages" book
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EVF Case Study: Evaluation
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Text

Difficulties
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▸ Modularity  

▸ no good support for modular pattern matching (bad for small step 
semantics and some operations) 

▸ Dependencies are hard, but manageable in EVF  

▸ Drawbacks 

▸ Instantiation code is boilerplate, but still has to be defined 
manually. Dependencies introduce quite a bit of instantiation 
boilerplate. 

▸ Some coding patterns are still heavy. 



Parsing Case Study: Overview (only syntax)
▸ Refactoring a 18 parsers for non-modular interpreters from 

the "Types and Programming Languages" book
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Parsing Framework (in Scala)
▸ Parsing framework combines: 

▸ design patterns for parsing (using Packrat parser combinators and Object Algebras) 

▸ libraries of parsing components 

▸ Multiple inheritance (traits in Scala) 

▸ Supports: 

▸ modular type-checking 

▸ separate compilation 

▸ modular (and type-safe) composition of parsers 

▸ Doesn’t support: 

▸ ambiguity checking (as any parser combinator based approach)
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Text

Composition: A Simple Example
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object	Bot	{		
		trait	Alg[E,	T]	extends	Typed.Alg[E,	T]	with	TopBot.Alg[T]		
	
		trait	Print	extends	Alg[String,	String]	with	Typed.Print	with	TopBot.Print	
	
		trait	Parse[E,	T]	extends	Typed.Parse[E,	T]	with	TopBot.Parse[T]	{	
				override	val	alg:	Alg[E,	T]		
				val	pBotE:	Parser[E]	=	pTypedE		
				val	pBotT:	Parser[T]	=	pTypedT	|||	pTopBotT		
				override	val	pE:	Parser[E]	=	pBotE		
				override	val	pT:	Parser[T]	=	pBotT		
		}	
}	

An	example	of	building	the	Bot	calculus	by	composi6on	
Component	Typed	for	simply	typed	lambda	calculus	
Component	TopBot	for	top	and	bo9om	types	

Longest match 
composition



Text

Comparison
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Text

Comparison (Performance Penalties)
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▸ We did further experiments to identify the performance 
penalties 

▸ Object Algebras vs Case classes (almost no impact on 
performance) 

▸ longest match combinator (7% slower vs alternative combinator) 

▸ Main reason for slowdown: extra method calls/
dispatching due to modularity (more indirection) 

▸ Future work: Partial evaluation/staging to remove 
indirections



Conclusion
▸ Semantic modularity techniques can scale reasonably well to small/

medium size languages, thanks to: 

▸ multiple inheritance and OO native support for open recursion 

▸ subtyping and generics 

▸ type-refinement  (covariant refinement of return types) 

▸ annotation-based code generation 

▸ Using mainstream languages is not perfect, though: 

▸ Would be better to have native language support for Object Algebras/Modular 
Visitors 

▸ Support for some form of modular pattern matching is highly desirable 

▸ Mainstream languages still have instantiation boilerplate 
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