
Teaching deductive verification with Why3 to
undergraduate students
Sandrine Blazy

University of Rennes 1, CNRS IRISA, Inria

sandrine.blazy@irisa.fr

IFIP WG 2.11 Salem 2019.04.30

mailto:sandrine.blazy@irisa.fr

The students

About 100 undergraduate students, 3rd year (2nd semester)

Expected prior experience:

• introduction to functional and immutable programming (Scala, 1st year)

• introduction to team programming : modules and interfaces, test driven

development, version control, contract programming (Scala, 2nd year)

• initiation to logic (propositional and predicate calculus, 3rd year)

• basic data structures (Java, 3rd year, 1st semester)

�2

Course organisation

• Lectures: (7-2) * 2 hours

• presentation of ideas and concepts

• interactive demos (incl. non-trivial algorithms)

• Exercises: 8 * 2 hours

• practice in group settings

• prepare labs

• quizz at the end of each session (10 minutes each)

• Labs: 10 * 2 hours

• work in pair in small-group settings

• submit a Why file at the end of the session (can be improved until the

end of the week)

• Written exam (2 hours)

Total : 52h for each student (from January to April), mandatory course

�3

Deductive verification in Why3

WhyML programming language: a subset of OCaml with imperative features

Several automated provers in our Linux distribution (AltErgo, cvc4, Eprover, Z3)

Many examples adapted from the Why3 gallery of verified programs

�4

verification
conditions

proof
specification 

+ 
program

Syllabus

1. First specifications

• Test of specifications

• First programs operating over integers

• loops, loop invariants and variants

• immutability / mutable variables, let constructs

2. Type invariant

• Arrays, sorts, matrices

3. Algebraic data types

• Recursive data types (incl. lists and trees) and programs

4. Ghost code
5. Weakest precondition calculus

�5

Writing formulas : hints

Many recipes are given to the students.

• to avoid bad practices

• verbose and difficult to read formulas

• too many variables, quantifiers,

• big formula that should be split (e.g. a post-condition)

• more than minimalistic formulas (e.g., the loop invariant is 0<i<N, so
that it becomes easier to prove)

• to help understand why a proof failed

Why3 is very useful !

�6

demo: loop.mlw

Testing a specification
What is a precise specification ?

�7

module Max1

val max (a b : int) : int
ensures { result=a \/ result=b }

end

module Max2

val max (a b : int) : int
ensures { result=a \/ result=b }
ensures { a ≤ result }
ensures { b ≤ result }

end

module Test

let test () =
 let m = max 3 4 in
 assert { m = 4 }
end

Specification: example of a sorted array

�8

type elt
predicate smaller_than elt elt
 
predicate sorted (t : array elt) =  
forall i1 i2:int. 0 ≤ i1 ≤ i2 < length t ! smaller_than t[i1] t[i2]

9 6 12 9 2 9 9 6

2 6 6 9 9 9 9 12 12 12

val sort (t: array elt) : array elt
ensures { sorted result }
ensures { permut t result }

Testing a specification vs. testing a code

• Easily accepted by students, but sometimes difficult to assert by provers

�9

let test_spec () =
 let a = make 3 0 in
 a[0] <- 7; a[1] <- 3; a[2] <- 1;
 let b = sort a in
 assert { b[0] = 1 };
 assert { b[1] = 3 };
 assert { b[2] = 7 }

ensures { sorted b /\ permut a b }

Arrays, sorts, matrices :  
practising loop invariants

1) Basic examples where the loop invariant mimics the post-condition

Ex.: compute the maximum of the elements of an array of natural numbers

�10

 predicate is_max (a: array int) (l h: int) (m: int) = …

 let max_tab (a: array int) (n: int) : int

 requires { 0 ≤ n = length a }

 requires { forall i:int. 0 ≤ i < n -> a[i] >= 0 }

 ensures { is_max a 0 n result }

 =

 let m = ref 0 in

 for i = 0 to n - 1 do

 invariant { is_max a 0 i !m }

 if !m < a[i] then m := a[i]

 done;

 !m

Arrays, sorts, matrices :  
practising loop invariants

2) Write the loop invariant first 
 Ex.: Dutch flag

3) Advanced examples with nested loops (e.g. insertion sort) and harder to
guess invariants (e.g. selection sort, bubble sort)

Encouraging results : Why3 is very useful to find the errors of the students

�11

R
 B W R R W B B R W

B B B W W W R R R R

Recursive programs

Programs manipulating lists and trees

• Comparison between recursive and iterative programs

• Well-known recursive programs (towers of Hanoi, a backtracking program)

• Axiomatisation of a recursive program, that is implemented using a loop

• Lab session: insertion and deletion of an element into a binary search tree

�12

function fibonacci int : int
…
axiom fibn: forall n:int. n>1 ->
 fibonacci n = fibonacci (n-1) + fibonacci (n-2)

Ghost code

Use of a ghost variable and a type invariant to handle a better suited data
structure

• Ex.: ring buffer

�13

3 4 6 7 8 9 2

first

{ lg elements

8 9 2 3 4 6 7

first

{lg elements{
ghost sequence [3; 4; 6; 7; 8; 9; 2]

a a

Conclusion

Understanding what is a precise specification takes some time !

• Testing a spec is very useful for beginners

• Promising feature of (some) provers : counter-example generation

• Some students tend to write a code that is not consistent with their spec 

Mandatory step : take time to think.

Recent improvements in automated provers

• Students could handle more advanced examples than expected.

• (Less and less) fragile technology: a tiny change in a spec may make it

unprovable

�14

Questions ?

�15

