
Reuse-based Verification of
Software Product Lines

Ina Schaefer
Chalmers University

schaefer@chalmers.se

8th IFIP WG 2.11 Meeting
 St. Andrews, U.K.
1-3 March 2010

mailto:schaefer@chamers.se
mailto:schaefer@chamers.se

Verification of Software Product Lines

HATS Project

2

Hats Facts

HATS: Highly Adaptable & Trustworthy Software Using Formal Models

Proposal Data

! FP7 FET focused call Forever Yours

! Project started 1 March 2009, 48months runtime

! Integrated Project, academically driven

! 8 academic partners, 2 industrial research, 1 SME

! 7 countries

! 730 PM, EC contribution 5,27 Me over 48 months
! Associated with FP7 Coordination Action: EternalS

• Trustworthy Eternal Systems via
Evolving Software, Data and Knowledge

Verification of Software Product Lines

HATS Consortium

3

Consortium & Lead Researchers

Hähnle, Bubel Chalmers Tekniska Högskola (Coordinator) SE
Johnsen, Steffen Universitetet i Oslo NO

Dam, Gurov Kungliga Tekniska Högskolan SE
Puebla, Barthe Universidad Politécnica de Madrid / IMDEA ES

Poetzsch-Heffter University of Kaiserslautern DE
Sangiorgi, Lanese Università di Bologna IT

De Boer Centrum voor Wiskunde en Informatica NE
Østvold Norsk Regnesentral NO
Diakov Fredhopper NE
Carbon Fraunhofer IESE DE

Clarke, Piessens Katholieke Universiteit Leuven BE

Verification of Software Product Lines

HATS Approach

4

Proposed Solution

A tool-supported formal method for
building highly adaptable and trustworthy software

Ingredients

1 Abstract Behavioral Specification (ABS) language: Executable
modeling language for adaptable software

2 Integrated framework and tool architecture around ABS

3 Tool suite for development and analysis:
e.g., feature consistency, type checking, property verification,
code generation, test case generation, specification mining

Verification of Software Product Lines

Verification of SPL

• Essential to ensure correctness of products
because of high configurative variability.

• Formal verification by theorem proving and model
checking.

• But, it is not feasible to verify each product in
isolation.

5

Verification of Software Product Lines

Reuse in Verification

6

Product 1

Product Line
Artifacts Base

Product N

! Verification of
Domain Artifacts
 (Incomplete or
 Parametric Proofs)" Instantiation of

Generic Proofs
(Partial Evaluation,
Compositionality)

Proof Reuse

[...]

Verification of Software Product Lines

Outline

• Model-based Software Product Line Engineering

• Implementing SPL with F!J

• Proof Reuse for Verification of F!J SPL

7

Verification of Software Product Lines

Base Sync (With) HolderInv(estment) Ret(irement)

Bank Account Product Line

« requires »

Feature Model

8

Example taken from [Batory at. al., FOAL09]

Verification of Software Product Lines 9

Model-based Development

I. Schaefer: Variability Modelling for Model-driven Development of Software Product Lines. Intl.

Workshop on Variability Modelling of Software-intensive Systems (VaMoS 2010), Linz, January 2010.

Feature Modelling

Feature Model Feature Configuration

Core Model1

Modelling Level 1

configure

configure
!-Models1

create

refine

[...]

Core Model2

Modelling Level 2
configure

!-Models2

refine

refine

Core Module

Implementation

configure
!-Modules Product Impl.

refine

Product Models1

Product Models2

Verification of Software Product Lines

F!J - A PL for SPL

10

• Extension of Java with Core and !-Modules

• Core Product is implemented by Core Module.

• Product-!s are implemented by !-Modules.

• A Product Implementation is obtained by Application of
!-Modules to Core Module.

• Type System ensures Safety of !-application.

I. Schaefer, L. Bettini, V. Bono, F. Damiani, N. Tanzarella: Delta-oriented Programming of Software
Product Lines. February 2010 (submitted)

Verification of Software Product Lines

Core Module

11

core BaseAccount {
class Account extends Object {

int balance;
void update(int x) { balance += x; }

}
}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;
renames update to unsync update;
adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

}
}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this
delta can only be applied after other deltas have been applied to the core module. Using
the after clause, it can be ensured, for instance, that a class that should be modified is
introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-
tory features, thus, in our example, the core contains only the class Account, as illus-
trated in Listing 1. Another strategy could be the one of implementing the core with
the most recurrent features in the products of the SPL (and then having some deltas
removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;
this modifies the class Account by adding a Lock field (whose class is not shown here)
and by wrapping the code for synchronization around the method update. In order to
do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before
it, and unlocking after it). Note that this delta must be applied after the deltas for re-
tirement and investment features, since the latter modify the update themselves. With
the after clause we ensure that the synchronization takes place on the correct, most
up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),
however, this is not expressed directly in the when clauses of their deltas (Listing 3
and 4, respectively), since it will be taken care of when the system selects the appli-
cability of deltas according to the feature model and the feature configuration. As ex-

A core module contains a set of Java classes.

Verification of Software Product Lines

!-Modules

• Modifications on Class Level:

• Addition, Removal and Modification of Classes

• Modifications of internal Class Structure:

• Adding, Removing, Renaming Fields

• Adding, Removing, Renaming Methods

• Application Condition in when clause: Boolean Constraint
on Features in Feature Model

• Partial Ordering of !-Modules by after clauses

12

Verification of Software Product Lines

!-Module for Sync

13

core BaseAccount {
class Account extends Object {

int balance;
void update(int x) { balance += x; }

}
}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;
renames update to unsync update;
adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

}
}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this
delta can only be applied after other deltas have been applied to the core module. Using
the after clause, it can be ensured, for instance, that a class that should be modified is
introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-
tory features, thus, in our example, the core contains only the class Account, as illus-
trated in Listing 1. Another strategy could be the one of implementing the core with
the most recurrent features in the products of the SPL (and then having some deltas
removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;
this modifies the class Account by adding a Lock field (whose class is not shown here)
and by wrapping the code for synchronization around the method update. In order to
do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before
it, and unlocking after it). Note that this delta must be applied after the deltas for re-
tirement and investment features, since the latter modify the update themselves. With
the after clause we ensure that the synchronization takes place on the correct, most
up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),
however, this is not expressed directly in the when clauses of their deltas (Listing 3
and 4, respectively), since it will be taken care of when the system selects the appli-
cability of deltas according to the feature model and the feature configuration. As ex-

Verification of Software Product Lines

!-Application

14

delta DwithHolder when WithHolder {
adds class Client {

Account a;
void payday(int x, int bonus) { a.addBonus(bonus); a.update(x); }

}
}

Listing 6: Delta module adding the With Holder feature

class Account extends WaMu {
int balance;
int 401kbalance;
Lock lock;
void original update(int x) { balance += x; }
void unsync update(int x) { x = x/2; original update(x); addBonus(x); }
void unsync addBonus(int x) { 401kbalance += x; }
void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }
void addBonus(int x) { lock.lock(); unsync addBonus(x); lock.unlock(); }

}

Listing 7: Account with Base, Sync and Investment features

Holder requires Retirement or Investment, thus the result of the application of delta
will be guaranteed to provide that method.

As an example of a resulting product we show the Account with Base, Synch and
Investment in Listing 7. This is the result of applying first delta Dinvestment, then
DsyncUpdate and DsyncBonus.3

The reader may have noticed that the deltas for Retirement and Investment have
some similarities: they both add the field 401balance and the addBonus method. Thus,
an alternative approach for writing the deltas is to write a common delta DaddBonus,

3 Note that our example relies on the fact that if the same thread calls lock() on the same lock
instance twice it will not deadlock.

class Account extends Object {
int balance;
Lock lock;
void unsync update(int x) { balance += x; }
void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

}

Listing 8: Account with Base, Sync and Investment features

core BaseAccount {
class Account extends Object {

int balance;
void update(int x) { balance += x; }

}
}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;
renames update to unsync update;
adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

}
}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this
delta can only be applied after other deltas have been applied to the core module. Using
the after clause, it can be ensured, for instance, that a class that should be modified is
introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-
tory features, thus, in our example, the core contains only the class Account, as illus-
trated in Listing 1. Another strategy could be the one of implementing the core with
the most recurrent features in the products of the SPL (and then having some deltas
removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;
this modifies the class Account by adding a Lock field (whose class is not shown here)
and by wrapping the code for synchronization around the method update. In order to
do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before
it, and unlocking after it). Note that this delta must be applied after the deltas for re-
tirement and investment features, since the latter modify the update themselves. With
the after clause we ensure that the synchronization takes place on the correct, most
up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),
however, this is not expressed directly in the when clauses of their deltas (Listing 3
and 4, respectively), since it will be taken care of when the system selects the appli-
cability of deltas according to the feature model and the feature configuration. As ex-

core BaseAccount {
class Account extends Object {

int balance;
void update(int x) { balance += x; }

}
}

Listing 1: Core module implementing the account with Base feature (product 1)

delta DsyncUpdate after Dretirement, Dinvestment when Sync {
modifies class Account {

adds Lock lock;
renames update to unsync update;
adds void update(int x) { lock.lock(); unsync update(x); lock.unlock(); }

}
}

Listing 2: Delta module adding the Sync feature

is applied. Further, a delta modules can contain an after clause that determines that this
delta can only be applied after other deltas have been applied to the core module. Using
the after clause, it can be ensured, for instance, that a class that should be modified is
introduced by a delta module applied earlier.

3.1 An implementation of the bank account SPL

In the first implementation we follow the strategy of having the core with only manda-
tory features, thus, in our example, the core contains only the class Account, as illus-
trated in Listing 1. Another strategy could be the one of implementing the core with
the most recurrent features in the products of the SPL (and then having some deltas
removing some features in specific configurations), as we will show in Section 3.2.

The delta implementing synchronization functionalities is presented in Listing 2;
this modifies the class Account by adding a Lock field (whose class is not shown here)
and by wrapping the code for synchronization around the method update. In order to
do this, the original method update is renamed into unsync update and a method up-
date is introduced which calls unsync update in a synchronized way (locking before
it, and unlocking after it). Note that this delta must be applied after the deltas for re-
tirement and investment features, since the latter modify the update themselves. With
the after clause we ensure that the synchronization takes place on the correct, most
up-to-date, update version.

The features Retirement and Investment are mutually exclusive (see Figure 1),
however, this is not expressed directly in the when clauses of their deltas (Listing 3
and 4, respectively), since it will be taken care of when the system selects the appli-
cability of deltas according to the feature model and the feature configuration. As ex-

Core
Module

!-Module

Product

Verification of Software Product Lines

Type System for F!J

• The core and !-modules can be typed in isolation.

• If a core module and a set of !-modules are type
correct, !-application is safe:

• removed and modified classes exists and added
classes do not exist

• all renamed/removed fields and methods exist

• all added fields and methods do not exist

• there are not conflicting modifications that are
not ordered by after clauses

15

Verification of Software Product Lines

Verification of F!J SPL

16

• We use the KeY System for deductive verification
of F!J SPL.

• Input to KeY:

• Java Program (generated from F!J SPL) with JML
Specifications

• KeY generates proof obligations in dynamic logic
and supports automatic and interactive verification.

Verification of Software Product Lines

Specification of Base Account

17

/*@
 @ public instance invariant balance >= 0;
 @*/

public class BaseAccount {
"

" int balance;
"

" /*@
" @ ensures \result.balance==0;
" @*/
" public BaseAccount(){
" balance = 0;
" }
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void update(int x){"
" " balance = balance + x;
" }

}

Instance Invariant

Method Contract

We want to prove that the balance of an account is always positive.

Verification of Software Product Lines

Specification of SyncAccount

19

/*@
 @ public instance invariant balance >= 0;
 @*/

public class SyncAccount {
"

" int balance;
" Lock lock;
"

"

" /*@
" @ ensures \result.balance==0;
" @*/
" public SyncAccount(){
" balance = 0;
" lock = new Lock();
" }
"

"

 /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void unsync_update(int x){"
" " balance = balance + x;
" }
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void update(int x){
" lock.lock(); unsync_update(x); lock.unlock();
" " }

}

We want to prove that the balance of a synchronized account is
always positive.

Verification of Software Product Lines

Comparison

20

public class BaseAccount {
"

[...]
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void update(int x){"
" " balance = balance + x;
" }

}

public class SyncAccount {
"

[...]

/*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void unsync_update(int x){"
" " balance = balance + x;
" }
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void update(int x){
" lock.lock(); unsync_update(x); lock.unlock();
" " }

}

Method Renaming

Proof Reuse for Method Contract

Verification of Software Product Lines

More Proof Reuse

21

public class RetAccount {
"

" int bbalance;
"

[...]
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures bbalance >= \old(bbalance);
" @*/
" public void update(int x){"
" " bbalance = bbalance + x;
" }
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures bbalance >= \old(bbalance);
" @*/
" public void addBonus(int x){"
" " bbalance = bbalance + x;
" }
}

public class BaseAccount {

int balance;
"

[...]
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void update(int x){"
" " balance = balance + x;
" }

}

Method
Renaming

Field Renaming

Proof Reuse for
 Both Method Contracts

Verification of Software Product Lines

Even More Proof Reuse?

22

public class BaseAccount {
"

[...]
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void update(int x){"
" " balance = balance + x;
" }

}

public class SyncAccount {
"

[...]

/*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void unsync_update(int x){"
" " balance = balance + x;
" }
"

" /*@
" @ public normal_behavior
" @ requires x > 0;
" @ assignable \everything;
" @ ensures balance >= \old(balance);
" @*/
" public void update(int x){
" lock.lock(); unsync_update(x); lock.unlock();
" " }

}

Wrapping of Original
Method Call

Partial Proof Reuse:
New Proof Steps for Wrapping

Verification of Software Product Lines

Observations

• Verified 17 method contracts in 6 variants of Bank
account SPL.

• Only 3 contracts have to be proven from scratch.

• General Approach to Proof Reuse for Verification of
Delta-oriented SPL?

23

Verification of Software Product Lines

Proof Reuse in KeY

24

Program P
+

Spec

Program P’
+

Spec

3. Determine new proof
steps by heuristics

Proof

1. Line-based Diff

2. Mark proof
steps for reuse

Proof’

Verification of Software Product Lines

!-oriented Proof Reuse

25

Program P
+

Spec

Program P’
+

Spec’

3. Determine new proof
steps by heuristics

using !-Information

Proof

2. Mark proof
steps for reuse

using !-Information

Proof’

!-Information
(Program-!s + Spec-!s)

1. Determine unchanged
Specs by !-based Slicing

with Bernhard Beckert and Vladmir Klevabov (Karlsruhe Institute of Technology)

Verification of Software Product Lines 26

Conclusion

• Model-driven Software Product Line Engineering
based on !-Modelling

• Implementing SPL with F!J

• Proof Reuse for Efficient Verification of F!J SPLs

Verification of Software Product Lines

Future Work

27

• Modular !-based Slicing Techniques

• Proof Reuse for Specification-!s

• Integration of Proof Reuse for SPL into KeY System

• Compositional Verification of !-Models

