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Problem overview
● Optimize sparse matrix/vector multiplication, 

using specialization on matrix (i.e. matrix is 
static over many multiplications)

● Issues
○ Many methods (generative and non-generative)
○ Performance varies by machine & matrix

● Goal: Library that tunes itself to machine, 
chooses best method for any matrix.



Sparse matrix-vector multiplication
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Standard representation: compressed sparse rows (CSR):
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Sparse matrix-vector multiplication
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// M is mxm; w is output vector
for (i=0; i<m; i++) { // row i
  double w_i = 0;
  for (j=row[i]; j<row[i+1]; j++){
    w_i += *values * v[*col_idx];
    values++; col_idx++;
  }
  w[i] = w_i;
}
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Unroll inner loop k times to get CSRk.  In our experiments, CSR2 is often much 
faster than CSR (up to 25%); relatively small gains after that.



Specialization: Unfolding

w[0] = a*v[0] + b*v[1];
w[1] = c*v[1];
w[2] = d*v[0] + e*v[2] + f*v[3];
w[3] = g*v[2];
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Specialization: Arrange rows by non-zero 
count

// Four rows have two elements
for (i in {0, 1, 2, 5}) {
  double w_i = 0;
  w_i = (*values++ * v[*col_idx++]);
  w_i += (*values++ * v
[*col_idx++]);
}
w[i] = w_i;
// Two rows have one element
for (i in {3, 4}) {
  double w_i = 0;
  w_i = (*values++ * v[*col_idx++]);
}
w[i] = w_i;



Specialization: Arrange rows by “stencil”
// Two rows rows have only diagonal elements
for (i in {0, 4})
  w[i] = (*values++ * v[i]);
// Two rows have elements at i, i+1
for (i in {1, 2})
  w[i] = *values++ * v[i]
         + *values++ * v[i+1];
// Two rows have elements at i-2, i
for (i in {3, 5})
  w[i] = *values++ * v[i-2]
         + *values++ * v[i];



Specialization: Arrange blocks by pattern
// Blocks with blue pattern
for (i,j in {(0,0),(2,2),(4,4)}) {
  w[i] += *values++ * v[j];
  w[i+1] += *values++ * v[j+1];
}
// Blocks with green pattern
for (i,j in {(2,0)})
  w[i] += *values++ * v[i];
// Blocks with red pattern
for (i,j in {(0,2), (4,2), (0,4)}) {
  w[i] += *values++ * v[i+1];
  w[i+1] += *values++ * v[i];
}



SpMV multiplication methods
● CSR, CSR2, CSR3, …
● Loop per row count (“CSRbyNZ”)
● Loop per stencil
● Unfolding
● OSKI (autotune to choose block size; pre-

generated code for blocks)
● genOSKI (generate code for patterns of non-

zeros in blocks)
● Diagonal; CSR with compression



Timing results

● Most methods are row-oriented, so pretty 
easily parallelized

● OpenMP, 4 threads; clang -O3
● Variety of Intel machines: Core i5, Core i7, 

Xeon E7 & L7555
● Speed-ups relative to MKL



Selected matrices

email-EuAll
n = 265,214
nz = 420,000

web-NotreDame
n = 325,729
nz = 1,493,000

web-base1m
n = 1,000,005
nz = 3,105,000

soc-epinions
n = 75,888
nz = 508,837

m133-b3
n = 200,200
nz = 800,800

s3dkt3m2
n = 90,449
nz = 1,888,336



Timing results for selected matrices

Speed-up relative to MKL, four threads

Core i7 Core i5 Xeon E7 Xeon L7555

email-EuAll CSRbyNz (1.92) genOSKI4 (1.88) CSRbyNz (3.02) Unfolding (4.17)

soc-epinions CSRbyNz (1.98) CSRbyNz (1.65) Unfolding (2.07) Stencil (2.04)

m133-b3 Unfolding (1.39) Unfolding (1.31) Unfolding (2.53) Unfolding (3.84)

web-NotreDame genOSKI4 (1.32) genOSKI4 (1.17) Unfolding (2.09) Unfolding (3.05)

s3dkt3m2 Stencil (4.17) genOSKI5 (1.55) Stencil (1.43) Stencil (1.37)

web-base1m Unfolding (3.05) Unfolding (1.5) Unfolding (3.03) Unfolding (4.96)



Why?  Partial answer is matrix properties

Speed-up relative to MKL, four threads

nz row cnts values stencils 4patterns 5patterns

email-EuAll 420,000 311 420,045 161,683 499 1088

soc-epinions 508,837 326 307854 49,442 3281 8439

m133-b3 800,800 1 2 200,200 489 1627

web-NotreDame 1,493,000 312 126,894 126,894 4135 9474

s3dkt3m2 1,888,336 23 29,116 935 97 143

web-base1m 3,105,000 370 222 504,865 4394 11,141



What to do next...
Goal: an auto-tuning library
● Gather machine info at install time
● At run time:

○ Use info about machine and matrix to choose best 
method

○ Quickly generate code
■ Only CSRi has no latency; other methods require 

code gen or at least rearrangement of data



What to do next...

How quickly?
● In about half the cases, positions of non-

zeros is known ahead of time.  Almost all 
methods depend only on this information.

● On parallel machines, can hedge our bets by 
running no-latency code on some 
processors while generating code on others.



Rapid code generation
● Cannot use actual run-time compilation

○ We tried to use LLVM optimization passes, but even 
carefully chosen and tuned, this was much too 
expensive.

● Following times are for purpose-built, 
machine-level code generators 



Timing results - sequential cross-over wrt CSR2
CSR2 Stencil CSRbyNZ Unfolding

analysis total factor analysis total factor analysi
s

total factor

s3dkt3
m2

3840 58K 61K 16 23K 23K 6 283K 559K 145

engine 6077 126K 393K 64 35K 36K 6 649K 1.01M 166

torso2 27.9M 38K 46K 16 13K 13K 5 151K 198K 71



Summary
● The central question for us was whether we could speed 

up SpMV multiplication by code generation.  In most 
cases, we can.

● Although most obvious method (unfolding) works pretty 
often, the problem is in general a lot more difficult than it 
looks.

● Biggest open question is how to determine what method 
works best in each circumstance.

● Beyond that, we have the pieces to put together the library 
we originally envisioned.


