
Progress on run-time
specialization for matrix-vector

multiplication

Sam Kamin, Univ. of Illinois Urbana-
Champaign (now Google)

joint work with Maria Garzaran (UIUC) and
Baris Aktemur (Ozyegin U, Istanbul)

Problem overview
● Optimize sparse matrix/vector multiplication,

using specialization on matrix (i.e. matrix is
static over many multiplications)

● Issues
○ Many methods (generative and non-generative)
○ Performance varies by machine & matrix

● Goal: Library that tunes itself to machine,
chooses best method for any matrix.

Sparse matrix-vector multiplication

a b

c

d e f

g

a b c d e f g

0 1 1 0 2 3 2

0 2 3 6 7

Standard representation: compressed sparse rows (CSR):

values

col_idx

rows

Sparse matrix-vector multiplication

a b c d e f g

0 1 1 0 2 3 2

0 2 3 6 7

// M is mxm; w is output vector
for (i=0; i<m; i++) { // row i
 double w_i = 0;
 for (j=row[i]; j<row[i+1]; j++){
 w_i += *values * v[*col_idx];
 values++; col_idx++;
 }
 w[i] = w_i;
}

values

col_idx

rows

Unroll inner loop k times to get CSRk. In our experiments, CSR2 is often much
faster than CSR (up to 25%); relatively small gains after that.

Specialization: Unfolding

w[0] = a*v[0] + b*v[1];
w[1] = c*v[1];
w[2] = d*v[0] + e*v[2] + f*v[3];
w[3] = g*v[2];

a b

c

d e f

g

Specialization: Arrange rows by non-zero
count

// Four rows have two elements
for (i in {0, 1, 2, 5}) {
 double w_i = 0;
 w_i = (*values++ * v[*col_idx++]);
 w_i += (*values++ * v
[*col_idx++]);
}
w[i] = w_i;
// Two rows have one element
for (i in {3, 4}) {
 double w_i = 0;
 w_i = (*values++ * v[*col_idx++]);
}
w[i] = w_i;

Specialization: Arrange rows by “stencil”
// Two rows rows have only diagonal elements
for (i in {0, 4})
 w[i] = (*values++ * v[i]);
// Two rows have elements at i, i+1
for (i in {1, 2})
 w[i] = *values++ * v[i]
 + *values++ * v[i+1];
// Two rows have elements at i-2, i
for (i in {3, 5})
 w[i] = *values++ * v[i-2]
 + *values++ * v[i];

Specialization: Arrange blocks by pattern
// Blocks with blue pattern
for (i,j in {(0,0),(2,2),(4,4)}) {
 w[i] += *values++ * v[j];
 w[i+1] += *values++ * v[j+1];
}
// Blocks with green pattern
for (i,j in {(2,0)})
 w[i] += *values++ * v[i];
// Blocks with red pattern
for (i,j in {(0,2), (4,2), (0,4)}) {
 w[i] += *values++ * v[i+1];
 w[i+1] += *values++ * v[i];
}

SpMV multiplication methods
● CSR, CSR2, CSR3, …
● Loop per row count (“CSRbyNZ”)
● Loop per stencil
● Unfolding
● OSKI (autotune to choose block size; pre-

generated code for blocks)
● genOSKI (generate code for patterns of non-

zeros in blocks)
● Diagonal; CSR with compression

Timing results

● Most methods are row-oriented, so pretty
easily parallelized

● OpenMP, 4 threads; clang -O3
● Variety of Intel machines: Core i5, Core i7,

Xeon E7 & L7555
● Speed-ups relative to MKL

Selected matrices

email-EuAll
n = 265,214
nz = 420,000

web-NotreDame
n = 325,729
nz = 1,493,000

web-base1m
n = 1,000,005
nz = 3,105,000

soc-epinions
n = 75,888
nz = 508,837

m133-b3
n = 200,200
nz = 800,800

s3dkt3m2
n = 90,449
nz = 1,888,336

Timing results for selected matrices

Speed-up relative to MKL, four threads

Core i7 Core i5 Xeon E7 Xeon L7555

email-EuAll CSRbyNz (1.92) genOSKI4 (1.88) CSRbyNz (3.02) Unfolding (4.17)

soc-epinions CSRbyNz (1.98) CSRbyNz (1.65) Unfolding (2.07) Stencil (2.04)

m133-b3 Unfolding (1.39) Unfolding (1.31) Unfolding (2.53) Unfolding (3.84)

web-NotreDame genOSKI4 (1.32) genOSKI4 (1.17) Unfolding (2.09) Unfolding (3.05)

s3dkt3m2 Stencil (4.17) genOSKI5 (1.55) Stencil (1.43) Stencil (1.37)

web-base1m Unfolding (3.05) Unfolding (1.5) Unfolding (3.03) Unfolding (4.96)

Why? Partial answer is matrix properties

Speed-up relative to MKL, four threads

nz row cnts values stencils 4patterns 5patterns

email-EuAll 420,000 311 420,045 161,683 499 1088

soc-epinions 508,837 326 307854 49,442 3281 8439

m133-b3 800,800 1 2 200,200 489 1627

web-NotreDame 1,493,000 312 126,894 126,894 4135 9474

s3dkt3m2 1,888,336 23 29,116 935 97 143

web-base1m 3,105,000 370 222 504,865 4394 11,141

What to do next...
Goal: an auto-tuning library
● Gather machine info at install time
● At run time:

○ Use info about machine and matrix to choose best
method

○ Quickly generate code
■ Only CSRi has no latency; other methods require

code gen or at least rearrangement of data

What to do next...

How quickly?
● In about half the cases, positions of non-

zeros is known ahead of time. Almost all
methods depend only on this information.

● On parallel machines, can hedge our bets by
running no-latency code on some
processors while generating code on others.

Rapid code generation
● Cannot use actual run-time compilation

○ We tried to use LLVM optimization passes, but even
carefully chosen and tuned, this was much too
expensive.

● Following times are for purpose-built,
machine-level code generators

Timing results - sequential cross-over wrt CSR2
CSR2 Stencil CSRbyNZ Unfolding

analysis total factor analysis total factor analysi
s

total factor

s3dkt3
m2

3840 58K 61K 16 23K 23K 6 283K 559K 145

engine 6077 126K 393K 64 35K 36K 6 649K 1.01M 166

torso2 27.9M 38K 46K 16 13K 13K 5 151K 198K 71

Summary
● The central question for us was whether we could speed

up SpMV multiplication by code generation. In most
cases, we can.

● Although most obvious method (unfolding) works pretty
often, the problem is in general a lot more difficult than it
looks.

● Biggest open question is how to determine what method
works best in each circumstance.

● Beyond that, we have the pieces to put together the library
we originally envisioned.

