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Problem overview

e Optimize sparse matrix/vector multiplication,
using specialization on matrix (i.e. matrix is
static over many multiplications)

® Issues

o Many methods (generative and non-generative)
o Performance varies by machine & matrix

e (Goal: Library that tunes itself to machine,
chooses best method for any matrix.



Sparse matrix-vector multiplication

Standard representation: compressed sparse rows (CSR):
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Sparse matrix-vector multiplication
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// M is mxm; w is output vector
for (i=0; i<m; i++) { // row i
double w i = 0;
for (j=row[i];, j<row[i+l]; Jj++) {
w i += *values * v[*col idx];
values++; col idx++;
}
w[i] = w 1i;
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Unroll inner loop k times to get CSR,. In our experiments, CSR, is often much
faster than CSR (up to 25%); relatively small gains after that.



Specialization: Unfolding

. b w[0] = a*v[0] + b*v[1l];
w[l] = c*v[l];
c w[2] = d*v[0] + e*v[2] + £*v[3];
w[3] = g*v[2];




Specialization:
count

Arrange rows by non-zero

// Four rows have two elements
for (1 in {0, 1, 2, 5}) {
double w i = 0;
w i = (*values++ * v[*col idx++]);
w i += (*values++ * v
[*col idx++]);
}
wli] = w_1i;
// Two rows have one element
for (1 in {3, 4})
double w i = 0;

w i = (*values++ * v[*col idx++]);
}

w[i] = w 1;



Specialization: Arrange rows by “stencil”

// Two
for (1
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rows rows have only diagonal elements
in {0, 4})
= (*values++ * v[i]) ;
rows have elements at i, i+l
in {1, 2})
= *values++ * v[i]

+ *values++ * v[i+l];
rows have elements at i-2, i
in {3, 5})
= *values++ * v[i-2]

+ *values++ * v[i];



Specialization: Arrange blocks by pattern

// Blocks with blue pattern

for (i,J in {(0,0),(2,2),(4,4)}) {
w[i] += *values++ * v[]];
w[i+l] += *values++ * v[j+1];

}

// Blocks with green pattern

for (1,3 in {(2,0)1})
w[i] += *values++ * v[i];

// Blocks with red pattern

for (i,J in {(0,2), (4,2), (0,4)}) {
w[i] += *values++ * v[i+l];
w[i+l] += *values++ * v[i];

}




SpMV multiplication methods

CSR, CSR,, CSR,, ...

_oop per row count ("CSRbyNZ")

_oop per stencll

Unfolding

OSKI (autotune to choose block size; pre-

generated code for blocks)

e genOSKI (generate code for patterns of non-
zeros in blocks)

e Diagonal; CSR with compression




Timing results

e Most methods are row-oriented, so pretty
easily parallelized

e OpenMP, 4 threads; clang -O3

e Variety of Intel machines: Core i5, Core i7/,
Xeon E7 & L7555

e Speed-ups relative to MKL



Selected matrices
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Timing results for selected matrices
Speed-up relative to MKL, four threads
Core i7 Core i5 Xeon E7 Xeon L7555

email-EuAll

CSRbyNz (1.92)

genOSKI4 (1.88)

CSRbyNz (3.02)

Unfolding (4.17)

soc-epinions

CSRbyNz (1.98)

CSRbyNz (1.65)

Unfolding (2.07)

Stencil (2.04)

m133-b3

Unfolding (1.39)

Unfolding (1.31)

Unfolding (2.53)

Unfolding (3.84)

web-NotreDame

genOSKIl4 (1.32)

genOSKl4 (1.17)

Unfolding (2.09)

Unfolding (3.05)

s3dkt3m2

Stencil (4.17)

genOSKI5S (1.55)

Stencil (1.43)

Stencil (1.37)

web-base1m

Unfolding (3.05)

Unfolding (1.5)

Unfolding (3.03)

Unfolding (4.96)




Why? Partial answer is matrix properties

Speed-up relative to MKL, four threads

nz row cnts values stencils 4patterns | Spatterns
email-EuAll 420,000 311 420,045 | 161,683 499 1088
soc-epinions 508,837 326 307854 | 49,442 3281 8439
m133-b3 800,800 1 2 200,200 489 1627
web-NotreDame 1,493,000 | 312 126,894 126,894 4135 9474
s3dkt3m2 1,888,336 | 23 29,116 935 97 143
web-base1m 3,105,000 | 370 222 504,865 4394 11,141




What to do next...

Goal: an auto-tuning library

e (Gather machine info at install time
e Atruntime:

o Use info about machine and matrix to choose best
method

o Quickly generate code

m Only CSR: has no latency; other methods require
code gen or at least rearrangement of data



What to do next...

How quickly?

e In about half the cases, positions of non-
zeros is known ahead of time. Almost all
methods depend only on this information.

e On parallel machines, can hedge our bets by
running no-latency code on some
processors while generating code on others.



Rapid code generation

e Cannot use actual run-time compilation
o We tried to use LLVM optimization passes, but even

carefully chosen and tuned, this was much too
expensive.

e Following times are for purpose-built,
machine-level code generators



Timing results - sequential cross-over wrt CSR,

CSR, | Stencil CSRbyNZ Unfolding
analysis | total | factor | analysis | total factor | analysi | total factor
s
s3dkt3 | 3840 | 58K 61K 16 23K 23K 6 283K 559K 145
m2
engine | 6077 | 126K 393K | 64 35K 36K 6 649K 1.01M | 166
torso2 | 27.9M | 38K 46K 16 13K 13K 5 151K 198K | 71




Summary

e The central question for us was whether we could speed
up SpMV multiplication by code generation. In most
cases, we can.

e Although most obvious method (unfolding) works pretty
often, the problem is in general a lot more difficult than it
looks.

e Biggest open question is how to determine what method
works best in each circumstance.

e Beyond that, we have the pieces to put together the library
we originally envisioned.



