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Feature-Oriented Software Development

What is a feature? 
Increment in program functionality
Implements a requirement
Provides a configuration option
Represents a domain concept
Is used to distinguish programs of a product line

Idea: represent features explicitly in design and code
Each feature is encapsulated in a module
A feature refines a (possibly empty) program
A final program is composed of a number of features
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Feature Decomposition and Composition

=Legacy
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Challenges

How untangle code of different features?
How to compose code of different features?
How to refactor legacy software systems into features?
How to ensure correctness of feature composition and 
refactoring?
How to represent and manage features at different stages 
of software development?
How to incorporate different kinds of software artifacts?
How to reason about features formally?
…
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Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature 
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE
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Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature 
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE
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Features are Crosscutting Concerns

Example: Session expiration in 
the Apache Tomcat Server

G. Kiczales
ECOOP’00 Panel

AOP: Fad or the Future
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Feature Modularity
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Two Programming Paradigms

FOP AOP
static good support –

fields, methods, classes
limited support –
fields, methods

dynamic weak support –
basic dynamic (method 
extensions)

good support –
advanced dynamic

heterogeneous good support –
refinements and 
collaborations

limited support –
no explicit collaborations

homogeneous no support –
one refinement per join point 
(code replication)

good support –
wildcards and enumerated 
pointcuts
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A Symbiosis of FOP and AOP

OOP

FOP

AOPFOP + AOP
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Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature 
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE
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An Observation

Numerous languages provide abstraction and modularity 
mechanisms for features

CaesarJ, Classbox/J, ContextL, FeatureC++, Hyper/J, Jak, 
Jiazzi, Lasagne/J, ObjectTeams/J, Scala

Despite all differences there is a common pattern 
Superimposition
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Superimposition

Informally,
...the composition of software components (features)
...by merging their corresponding substructures 
hierarchically
...by matching name, type, and relative position

Feature F Feature G Feature F • G
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An Idea

Capture the essential properties of superimposition in a 
model (Feature Structure Tree) and tool (FSTComposer)

Language independence
Understand the principles of feature composition
Plugging in the language of your choice

Calculator

Calc

e0 e2e1 enter cleartop

field field field method method method

class

packageCalcBase feature
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Tool Chain
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Case Studies

Supported languages: Java, C#, C, XML, JavaCC
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Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature 
composition technique
Feature algebra, a formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE
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Feature Algebra

Formal reasoning about feature composition
Abstracts from details of programming languages
Alternatives in the algebra are alternatives in programming 
language mechanisms
Not only useful for the description of composition, e.g., for 
feature interaction analysis
Architectural metaprogramming
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Superimposition is Introduction Sum

Calculator

Calc

e0 e2e1 enter cleartop

field field field method method method

class

packageCalcBase feature
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Quantification and Weaving is Modification Application

Calc

enter

cleartop
a  ( )

Calc

enter

cleartop

Calc

enter

cleartop
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Modification Application

Quantification

Weaving

m

m (      )
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Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature 
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE
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State of the Art

Current FOP languages and tools do not care much about 
type safety
Usually, feature code is translated to a lower-level 
representation, e.g., Jak to Java or FeatureC++ to C++
Typing is postponed to the target language compiler

Information is lost for typing and debugging
Solution: type systems for FOP languages

FFJ: a case study extending FJ by features
gDeep: a language-independent type system framework
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Feature Featherweight Java (FFJ)

Extending FJ toward FOP
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Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references
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Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references

A

B

C

P = C ( B ( A ))
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Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references

Backward
Reference

Forward
Reference

A
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P = C ( B ( A ))
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Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references
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gDeep

Language-independent module system
Feature module record
Feature composition recursive record superimposition

Subtyping laws for features
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gDeep

Type system based on Deep (Hutchins, OOPSLA’06)
Combination of nominal and structural subtyping
Framework for plugging in sister calculi hierarchical type 
system

– gDeep module checking
– Sister calculus term checking
– Currently supported: FJ, XML, Bali

Benefit: do not need to extend each artifact language!

...

... ...

Dg EEP

g ggFJ XML Bali
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Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature 
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE
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Observation

Granularity of feature composition is sometimes too 
coarse

Extending a sequence of statements
Extending the signature of a method
Extending expressions and control structures

A solution: preprocessors, frames, annotations?
Pollute source code
Error-prone
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Our Approach: Colored IDE (CIDE)
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Projection and Generation

Show/Hide

Generate
(Product or
entire SPL)
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Safe Decomposition

Features are assigned to structural elements                   
(to optional AST-subtrees)
AST hidden from developer, mapped by CIDE
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Dualities

Attribute grammar-based integration of new languages
FSTComposer CIDE

Type system for colored Java code
FFJ CFJ
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Aspectual Feature Modules

Superimposition

Feature Algebra

Type Systems

CIDE
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The Big Picture

The Standish Group Chaos Reports 
16% of all software projects were successful (1995)
34% of all software projects were successful (2003)

Software crisis and software engineering
1st NATO Software Engineering Conference (1968)
Software Engineering Institute, ICSE, ESEC, FSE, …

Ways out of the crisis fundamental principles
Modularity and separation of concerns
Stepwise refinement / development
…
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class Edge {
Node a, b;
Color color = new Color();
Weight weight = new Weight();
Edge(Node _a, Node _b) { a = _a; b = _b; }
void print() {

Color.setDisplayColor(color);
a.print(); b.print(); 
weight.print();

}
}

class Edge {
Node a, b;
Color color = new Color();
Weight weight = new Weight();
Edge(Node _a, Node _b) { a = _a; b = _b; }
void print() {

Color.setDisplayColor(color);
a.print(); b.print(); 
weight.print();

}
}

class Edge {
Node a, b;
Color color = new Color();
Weight weight = new Weight();
Edge(Node _a, Node _b) { a = _a; b = _b; }
void print() {

Color.setDisplayColor(color);
a.print(); b.print(); 
weight.print();

}
}

class Graph {
Vector nv = new Vector(); Vector ev = new Vector();
Edge add(Node n, Node m) {
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e); 
e.weight = new Weight();
return e;

}
Edge add(Node n, Node m, Weight w)
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;

}
void print() {
for(int i = 0; i < ev.size(); i++) {

((Edge)ev.get(i)).print(); 
}

}
}

class Graph {
Vector nv = new Vector(); Vector ev = new Vector();
Edge add(Node n, Node m) {
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e); 
e.weight = new Weight();
return e;

}
Edge add(Node n, Node m, Weight w)
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;

}
void print() {
for(int i = 0; i < ev.size(); i++) {

((Edge)ev.get(i)).print(); 
}

}
}

class Node {
int id = 0;
Color color = new Color();
void print() { 

Color.setDisplayColor(color);
System.out.print(id);

}
}

An Introductory Example

class Node {
int id = 0;
Color color = new Color();
void print() { 

Color.setDisplayColor(color);
System.out.print(id);

}
}

class Color {
static void setDisplayColor(Color c) { ... } 

} class Weight { void print() { ... } }

Code Scattering

Code Tangling

Code Replication
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Crosscutting Concerns

“A concern is an area of interest or focus in a system. 
Concerns are the primary criteria for decomposing 
software into smaller, more manageable and 
comprehensible parts that have meaning to a software 
engineer.” (AOSD.NET Glossary)

“Crosscutting (is) a structural relationship between 
representations of a concern. In this way it is similar to 
other kinds of structure, like hierarchical structure and 
block structure.” (AOSD.NET Glossary)
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Is There a Software Crisis?

[…] only about 16% of software projects were successful, 
53% were fraught with problems (cost or budget overruns, 
content deficiencies), and 31% were cancelled; the 
average software project ran 222% late, 189% over 
budget and delivered only 61% of the specified functions.

– Chaos Report, Standish Group 1995

[…] only about 34% of all software projects were deemed 
to be successful.

– Chaos Report, Standish Group 2003
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Feature Modules à la Jak

class Graph {
Vector nv = new Vector(); 
Vector ev = new Vector();
Edge add(Node n, Node m) {

Edge e = new Edge(n, m);
nv.add(n); nv.add(m);  
ev.add(e); return e;

}
void print() {

for(int i = 0; i < ev.size(); i++) 
((Edge)ev.get(i)).print(); 

}
}

class Node {
int id = 0;
void print() { 

System.out.print(id);
}

}

class Edge {
Node a, b;
Edge(Node _a, Node _b) { 

a = _a; b = _b; 
}
void print() {

a.print(); b.print(); 
}

}

class Weight { 
void print() { ... } 

}

refines class Graph {
Edge add(Node n, Node m) {

Edge e = super.add(n, m);
e.weight = new Weight();

}
Edge add(Node n, Node m, Weight w)

Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;

}
}

refines class Edge {
Weight weight = new Weight();
void print() {

super.print(); weight.print();
}

}

Basic
Graph

Weight
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Aspects à la AspectJ

class Graph {
Vector nv = new Vector(); 
Vector ev = new Vector();
Edge add(Node n, Node m) {

Edge e = new Edge(n, m);
nv.add(n); nv.add(m);  
ev.add(e); return e;

}
void print() {

for(int i = 0; i < ev.size(); i++) 
((Edge)ev.get(i)).print(); 

}
}

class Node {
int id = 0;
void print() { 

System.out.print(id);
}

}

class Edge {
Node a, b;
Edge(Node _a, Node _b) { 

a = _a; b = _b; 
}
void print() {

a.print(); b.print(); 
}

}

Basic
Graph

aspect ColorAspect {
interface Colored { ... }
declare parents: (Node || Edge) implements Colored;
Color (Node || Edge).color = new Color();
before(Colored c) : execution(void print()) && this(c) {

Color.setDisplayColor(c.color); 
}
static class Color { ... }

}

Color



Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 46IFIP WG 2.11 Meeting, Passau, June 2008

AOP versus FOP

aspectaspect
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Tyranny of the Dominant Decomposition

[a] program can be modularized in only one way at a time, 
and the many kinds of concerns that do not align with that 
modularization end up scattered across many modules 
and tangled with one another.

Multi-dimensional separation of concerns is aimed at 
breaking the tyranny, allowing separation of all kinds of 
concerns of importance simultaneously, including 
overlapping, interacting and crosscutting concerns.

-- Software by Composition group at the 
IBM T.J. Watson Research Center
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Example: FSTComposer plus Java
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Example: FSTComposer plus Java
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Example: FSTComposer plus Java
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Example: FFJ
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Example: gDeep
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Type Checking in gDeep

Ensure that every function (i.e., feature) is monotone
Ensure that for F(A), A has the right type
For delegation M@(N).L, ensure that N ≤ M and M is 
record with a slot label L
For M refines V, ensure that every overriding slot in M is a 
subtype of the corresponding slot in V
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How to Plug FJ into gDeep?

Replace the class table; classes are looked up via paths

Introduce a syntax for delegating behavior

Define translation function
Classes gDeep records
Methods and fields gDeep declarations

Modular type checking
gFJ’s type rules use gDeep’s subtype rules

)().@( umtC )(. umoriginal

selfiswhere. XcX
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Example: gDeep + gFJ
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Example: gDeep + gBali
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Example: gDeep + gXak
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