
Recent Developments inRecent Developments in
FeatureFeature--OrientedOriented

Software DevelopmentSoftware Development

Sven Apel
Chair for Programming

University of Passau, Germany

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 2IFIP WG 2.11 Meeting, Passau, June 2008

A Joint Effort

Don Batory (University of Texas at Austin)
DeLesley Hutchins (University of Edinburgh)
Christian Kästner (University of Magdeburg)
Martin Kuhlemann (University of Magdeburg)
Thomas Leich (Metop Inc.)
Christian Lengauer (University of Passau)
Roberto Lopez-Herrejon (Oxford University)
Bernhard Möller (University of Augsburg)
Marko Rosenmüller (University of Magdeburg)
etc.

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 3IFIP WG 2.11 Meeting, Passau, June 2008

Feature-Oriented Software Development

What is a feature?
Increment in program functionality
Implements a requirement
Provides a configuration option
Represents a domain concept
Is used to distinguish programs of a product line

Idea: represent features explicitly in design and code
Each feature is encapsulated in a module
A feature refines a (possibly empty) program
A final program is composed of a number of features

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 4IFIP WG 2.11 Meeting, Passau, June 2008

Feature Decomposition and Composition

=Legacy
Program

Set of
Features

and Rules

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 5IFIP WG 2.11 Meeting, Passau, June 2008

Feature Decomposition and Composition

=

=

Legacy
Program

Software
Product Line =

Set of
Features

and Rules

=

Tailored
Program
Variants

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 6IFIP WG 2.11 Meeting, Passau, June 2008

Challenges

How untangle code of different features?
How to compose code of different features?
How to refactor legacy software systems into features?
How to ensure correctness of feature composition and
refactoring?
How to represent and manage features at different stages
of software development?
How to incorporate different kinds of software artifacts?
How to reason about features formally?
…

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 7IFIP WG 2.11 Meeting, Passau, June 2008

Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 8IFIP WG 2.11 Meeting, Passau, June 2008

Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 9IFIP WG 2.11 Meeting, Passau, June 2008

Features are Crosscutting Concerns

Example: Session expiration in
the Apache Tomcat Server

G. Kiczales
ECOOP’00 Panel

AOP: Fad or the Future

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 10IFIP WG 2.11 Meeting, Passau, June 2008

Feature Modularity

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 11IFIP WG 2.11 Meeting, Passau, June 2008

Two Programming Paradigms

FOP AOP
static good support –

fields, methods, classes
limited support –
fields, methods

dynamic weak support –
basic dynamic (method
extensions)

good support –
advanced dynamic

heterogeneous good support –
refinements and
collaborations

limited support –
no explicit collaborations

homogeneous no support –
one refinement per join point
(code replication)

good support –
wildcards and enumerated
pointcuts

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 12IFIP WG 2.11 Meeting, Passau, June 2008

A Symbiosis of FOP and AOP

OOP

FOP

AOPFOP + AOP

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 13IFIP WG 2.11 Meeting, Passau, June 2008

Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 14IFIP WG 2.11 Meeting, Passau, June 2008

An Observation

Numerous languages provide abstraction and modularity
mechanisms for features

CaesarJ, Classbox/J, ContextL, FeatureC++, Hyper/J, Jak,
Jiazzi, Lasagne/J, ObjectTeams/J, Scala

Despite all differences there is a common pattern
Superimposition

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 15IFIP WG 2.11 Meeting, Passau, June 2008

Superimposition

Informally,
...the composition of software components (features)
...by merging their corresponding substructures
hierarchically
...by matching name, type, and relative position

Feature F Feature G Feature F • G

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 16IFIP WG 2.11 Meeting, Passau, June 2008

An Idea

Capture the essential properties of superimposition in a
model (Feature Structure Tree) and tool (FSTComposer)

Language independence
Understand the principles of feature composition
Plugging in the language of your choice

Calculator

Calc

e0 e2e1 enter cleartop

field field field method method method

class

packageCalcBase feature

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 17IFIP WG 2.11 Meeting, Passau, June 2008

Tool Chain

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 18IFIP WG 2.11 Meeting, Passau, June 2008

Case Studies

Supported languages: Java, C#, C, XML, JavaCC

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 19IFIP WG 2.11 Meeting, Passau, June 2008

Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature
composition technique
Feature algebra, a formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 20IFIP WG 2.11 Meeting, Passau, June 2008

Feature Algebra

Formal reasoning about feature composition
Abstracts from details of programming languages
Alternatives in the algebra are alternatives in programming
language mechanisms
Not only useful for the description of composition, e.g., for
feature interaction analysis
Architectural metaprogramming

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 21IFIP WG 2.11 Meeting, Passau, June 2008

Superimposition is Introduction Sum

Calculator

Calc

e0 e2e1 enter cleartop

field field field method method method

class

packageCalcBase feature

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 22IFIP WG 2.11 Meeting, Passau, June 2008

Quantification and Weaving is Modification Application

Calc

enter

cleartop
a ()

Calc

enter

cleartop

Calc

enter

cleartop

a

Modification Application

Quantification

Weaving

m

m ()

)...(clearCalcenterCalctopCalcCalcm ⊕⊕⊕

).().(
).()(

clearCalcmenterCalcm
topCalcmCalcm

⊕
⊕⊕

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 23IFIP WG 2.11 Meeting, Passau, June 2008

Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 24IFIP WG 2.11 Meeting, Passau, June 2008

State of the Art

Current FOP languages and tools do not care much about
type safety
Usually, feature code is translated to a lower-level
representation, e.g., Jak to Java or FeatureC++ to C++
Typing is postponed to the target language compiler

Information is lost for typing and debugging
Solution: type systems for FOP languages

FFJ: a case study extending FJ by features
gDeep: a language-independent type system framework

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 25IFIP WG 2.11 Meeting, Passau, June 2008

Feature Featherweight Java (FFJ)

Extending FJ toward FOP

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 26IFIP WG 2.11 Meeting, Passau, June 2008

Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 27IFIP WG 2.11 Meeting, Passau, June 2008

Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references

A

B

C

P = C (B (A))

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 28IFIP WG 2.11 Meeting, Passau, June 2008

Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references

Backward
Reference

Forward
Reference

A

B

C

P = C (B (A))

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 29IFIP WG 2.11 Meeting, Passau, June 2008

Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references

Backward
Reference

Forward
Reference

A

B

C

P = C (B (A))

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 30IFIP WG 2.11 Meeting, Passau, June 2008

Extensions of FFJ

ME — method extension
DV — default values
SD — superclass declaration
BR — backward references

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 31IFIP WG 2.11 Meeting, Passau, June 2008

gDeep

Language-independent module system
Feature module record
Feature composition recursive record superimposition

Subtyping laws for features

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 32IFIP WG 2.11 Meeting, Passau, June 2008

gDeep

Type system based on Deep (Hutchins, OOPSLA’06)
Combination of nominal and structural subtyping
Framework for plugging in sister calculi hierarchical type
system

– gDeep module checking
– Sister calculus term checking
– Currently supported: FJ, XML, Bali

Benefit: do not need to extend each artifact language!

...

... ...

Dg EEP

g ggFJ XML Bali

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 33IFIP WG 2.11 Meeting, Passau, June 2008

Agenda

Feature modularity through aspectual feature modules
Superimposition as language-independent feature
composition technique
Feature algebra, as formal foundation for features
Type systems for feature composition
Feature analysis and decomposition with Colored IDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 34IFIP WG 2.11 Meeting, Passau, June 2008

Observation

Granularity of feature composition is sometimes too
coarse

Extending a sequence of statements
Extending the signature of a method
Extending expressions and control structures

A solution: preprocessors, frames, annotations?
Pollute source code
Error-prone

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 35IFIP WG 2.11 Meeting, Passau, June 2008

Our Approach: Colored IDE (CIDE)

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 36IFIP WG 2.11 Meeting, Passau, June 2008

Projection and Generation

Show/Hide

Generate
(Product or
entire SPL)

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 37IFIP WG 2.11 Meeting, Passau, June 2008

Safe Decomposition

Features are assigned to structural elements
(to optional AST-subtrees)
AST hidden from developer, mapped by CIDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 38IFIP WG 2.11 Meeting, Passau, June 2008

Dualities

Attribute grammar-based integration of new languages
FSTComposer CIDE

Type system for colored Java code
FFJ CFJ

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 39IFIP WG 2.11 Meeting, Passau, June 2008

S. Apel, T. Leich, and G. Saake. Aspectual Feature
Modules. IEEE Trans. Softw. Eng. (TSE), 34(2), 2008.
S. Apel and C. Lengauer. Superimposition: A
Language-Independent Approach to Software
Composition. In Proc. Int. Symp. Software
Composition (SC), 2008.
S. Apel, C. Lengauer, B. Möller, and C. Kästner. An
Algebra for Features and Feature Composition. In
Proc. Int. Conf. Algebraic Methodology and Software
Technology (AMAST), 2008.
S. Apel, C. Kästner, and C. Lengauer. An Overview of
Feature Featherweight Java. Technical Report MIP-
0802, University of Passau, 2008.
S. Apel and D. Hutchins. An Overview of the gDeep
Calculus. Technical Report MIP-0712, University of
Passau, 2007.
C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proc. Int. Conf.
Software Engineering (ICSE), 2008.
C. Kästner and S. Apel. Type-checking Software
Product Lines – A Formal Approach. In Proc. Int.
Conf. Automated Software Engineering (ASE), 2008.

Aspectual Feature Modules

Superimposition

Feature Algebra

Type Systems

CIDE

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 40IFIP WG 2.11 Meeting, Passau, June 2008

The Big Picture

The Standish Group Chaos Reports
16% of all software projects were successful (1995)
34% of all software projects were successful (2003)

Software crisis and software engineering
1st NATO Software Engineering Conference (1968)
Software Engineering Institute, ICSE, ESEC, FSE, …

Ways out of the crisis fundamental principles
Modularity and separation of concerns
Stepwise refinement / development
…

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 41IFIP WG 2.11 Meeting, Passau, June 2008

class Edge {
Node a, b;
Color color = new Color();
Weight weight = new Weight();
Edge(Node _a, Node _b) { a = _a; b = _b; }
void print() {

Color.setDisplayColor(color);
a.print(); b.print();
weight.print();

}
}

class Edge {
Node a, b;
Color color = new Color();
Weight weight = new Weight();
Edge(Node _a, Node _b) { a = _a; b = _b; }
void print() {

Color.setDisplayColor(color);
a.print(); b.print();
weight.print();

}
}

class Edge {
Node a, b;
Color color = new Color();
Weight weight = new Weight();
Edge(Node _a, Node _b) { a = _a; b = _b; }
void print() {

Color.setDisplayColor(color);
a.print(); b.print();
weight.print();

}
}

class Graph {
Vector nv = new Vector(); Vector ev = new Vector();
Edge add(Node n, Node m) {
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = new Weight();
return e;

}
Edge add(Node n, Node m, Weight w)
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;

}
void print() {
for(int i = 0; i < ev.size(); i++) {

((Edge)ev.get(i)).print();
}

}
}

class Graph {
Vector nv = new Vector(); Vector ev = new Vector();
Edge add(Node n, Node m) {
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = new Weight();
return e;

}
Edge add(Node n, Node m, Weight w)
Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;

}
void print() {
for(int i = 0; i < ev.size(); i++) {

((Edge)ev.get(i)).print();
}

}
}

class Node {
int id = 0;
Color color = new Color();
void print() {

Color.setDisplayColor(color);
System.out.print(id);

}
}

An Introductory Example

class Node {
int id = 0;
Color color = new Color();
void print() {

Color.setDisplayColor(color);
System.out.print(id);

}
}

class Color {
static void setDisplayColor(Color c) { ... }

} class Weight { void print() { ... } }

Code Scattering

Code Tangling

Code Replication

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 42IFIP WG 2.11 Meeting, Passau, June 2008

Crosscutting Concerns

“A concern is an area of interest or focus in a system.
Concerns are the primary criteria for decomposing
software into smaller, more manageable and
comprehensible parts that have meaning to a software
engineer.” (AOSD.NET Glossary)

“Crosscutting (is) a structural relationship between
representations of a concern. In this way it is similar to
other kinds of structure, like hierarchical structure and
block structure.” (AOSD.NET Glossary)

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 43IFIP WG 2.11 Meeting, Passau, June 2008

Is There a Software Crisis?

[…] only about 16% of software projects were successful,
53% were fraught with problems (cost or budget overruns,
content deficiencies), and 31% were cancelled; the
average software project ran 222% late, 189% over
budget and delivered only 61% of the specified functions.

– Chaos Report, Standish Group 1995

[…] only about 34% of all software projects were deemed
to be successful.

– Chaos Report, Standish Group 2003

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 44IFIP WG 2.11 Meeting, Passau, June 2008

Feature Modules à la Jak

class Graph {
Vector nv = new Vector();
Vector ev = new Vector();
Edge add(Node n, Node m) {

Edge e = new Edge(n, m);
nv.add(n); nv.add(m);
ev.add(e); return e;

}
void print() {

for(int i = 0; i < ev.size(); i++)
((Edge)ev.get(i)).print();

}
}

class Node {
int id = 0;
void print() {

System.out.print(id);
}

}

class Edge {
Node a, b;
Edge(Node _a, Node _b) {

a = _a; b = _b;
}
void print() {

a.print(); b.print();
}

}

class Weight {
void print() { ... }

}

refines class Graph {
Edge add(Node n, Node m) {

Edge e = super.add(n, m);
e.weight = new Weight();

}
Edge add(Node n, Node m, Weight w)

Edge e = new Edge(n, m);
nv.add(n); nv.add(m); ev.add(e);
e.weight = w; return e;

}
}

refines class Edge {
Weight weight = new Weight();
void print() {

super.print(); weight.print();
}

}

Basic
Graph

Weight

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 45IFIP WG 2.11 Meeting, Passau, June 2008

Aspects à la AspectJ

class Graph {
Vector nv = new Vector();
Vector ev = new Vector();
Edge add(Node n, Node m) {

Edge e = new Edge(n, m);
nv.add(n); nv.add(m);
ev.add(e); return e;

}
void print() {

for(int i = 0; i < ev.size(); i++)
((Edge)ev.get(i)).print();

}
}

class Node {
int id = 0;
void print() {

System.out.print(id);
}

}

class Edge {
Node a, b;
Edge(Node _a, Node _b) {

a = _a; b = _b;
}
void print() {

a.print(); b.print();
}

}

Basic
Graph

aspect ColorAspect {
interface Colored { ... }
declare parents: (Node || Edge) implements Colored;
Color (Node || Edge).color = new Color();
before(Colored c) : execution(void print()) && this(c) {

Color.setDisplayColor(c.color);
}
static class Color { ... }

}

Color

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 46IFIP WG 2.11 Meeting, Passau, June 2008

AOP versus FOP

aspectaspect

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 47IFIP WG 2.11 Meeting, Passau, June 2008

Tyranny of the Dominant Decomposition

[a] program can be modularized in only one way at a time,
and the many kinds of concerns that do not align with that
modularization end up scattered across many modules
and tangled with one another.

Multi-dimensional separation of concerns is aimed at
breaking the tyranny, allowing separation of all kinds of
concerns of importance simultaneously, including
overlapping, interacting and crosscutting concerns.

-- Software by Composition group at the
IBM T.J. Watson Research Center

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 48IFIP WG 2.11 Meeting, Passau, June 2008

Example: FSTComposer plus Java

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 49IFIP WG 2.11 Meeting, Passau, June 2008

Example: FSTComposer plus Java

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 50IFIP WG 2.11 Meeting, Passau, June 2008

Example: FSTComposer plus Java

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 51IFIP WG 2.11 Meeting, Passau, June 2008

Example: FFJ

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 52IFIP WG 2.11 Meeting, Passau, June 2008

Example: gDeep

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 53IFIP WG 2.11 Meeting, Passau, June 2008

Type Checking in gDeep

Ensure that every function (i.e., feature) is monotone
Ensure that for F(A), A has the right type
For delegation M@(N).L, ensure that N ≤ M and M is
record with a slot label L
For M refines V, ensure that every overriding slot in M is a
subtype of the corresponding slot in V

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 54IFIP WG 2.11 Meeting, Passau, June 2008

How to Plug FJ into gDeep?

Replace the class table; classes are looked up via paths

Introduce a syntax for delegating behavior

Define translation function
Classes gDeep records
Methods and fields gDeep declarations

Modular type checking
gFJ’s type rules use gDeep’s subtype rules

)().@(umtC)(. umoriginal

selfiswhere. XcX

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 55IFIP WG 2.11 Meeting, Passau, June 2008

Example: gDeep + gFJ

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 56IFIP WG 2.11 Meeting, Passau, June 2008

Example: gDeep + gBali

Sven Apel Recent Developments in Feature-Oriented Software Development

Slide - 57IFIP WG 2.11 Meeting, Passau, June 2008

Example: gDeep + gXak

	Recent Developments in�Feature-Oriented�Software Development
	A Joint Effort
	Feature-Oriented Software Development
	Feature Decomposition and Composition
	Feature Decomposition and Composition
	Challenges
	Agenda
	Agenda
	Features are Crosscutting Concerns
	Feature Modularity
	Two Programming Paradigms
	A Symbiosis of FOP and AOP
	Agenda
	An Observation
	Superimposition
	An Idea
	Tool Chain
	Case Studies
	Agenda
	Feature Algebra
	Superimposition is Introduction Sum
	Quantification and Weaving is Modification Application
	Agenda
	State of the Art
	Feature Featherweight Java (FFJ)
	Extensions of FFJ
	Extensions of FFJ
	Extensions of FFJ
	Extensions of FFJ
	Extensions of FFJ
	gDeep
	gDeep
	Agenda
	Observation
	Our Approach: Colored IDE (CIDE)
	Projection and Generation
	Safe Decomposition
	Dualities
	The Big Picture
	An Introductory Example
	Crosscutting Concerns
	Is There a Software Crisis?
	Feature Modules à la Jak
	Aspects à la AspectJ
	AOP versus FOP
	Tyranny of the Dominant Decomposition
	Example: FSTComposer plus Java
	Example: FSTComposer plus Java
	Example: FSTComposer plus Java
	Example: FFJ
	Example: gDeep
	Type Checking in gDeep
	How to Plug FJ into gDeep?
	Example: gDeep + gFJ
	Example: gDeep + gBali
	Example: gDeep + gXak

