An E-Learning System for
"The Formal Semantics of
Computer Programs”
and
Its Implementation by
Program Generation

Atsushi Igarashi
(Kyoto Univ.)



Plan of The Talk

e Graduate Course on the Formal Semantics of
Computer Programs

° Demo of the System

* How the system is designed and implemented

° Concluding Remarks



Formal Semantics of Computer Programs

° Taught in Grad. Schl. of Informatics, Kyoto
U. for 12 yrs.

e« Tn 2013:

* Big-step semantics of core ML, incl.

* Lists and pattern matching
* ML type system and HM type inference

* Metatheory: type soundness, principal types, etc.
* E-Learning system for self-study (2008-)



E-Learning System (2008-)

e Exercise to write down concrete derivations
of evaluation and typing relations

* To get used to derivations
* To understand the object theory (i.e., ML) better

° Web-based system (open to public)

e Automated derivation checker(s)

* 150 questions



Demo



Plan of The Talk

e Graduate Course on the Formal Semantics of
Computer Programs

* Course overview
° Demo of the System
* How the system is designed and implemented

° Concluding Remarks



Goals and Requirements

Goals

* Gentle error messages

* Minimal development time

* No discrepancies btw. fextbook and system
Requirements

* Derivation checker
* No formal metatheory needed

* Handling many different formal systems



Three Options I Considered

° Use of proof assistants (Coq, Twelf, ...)
e Kind of overkill

* Indirect representation

e Generic derivation checker

° Derivation checker generator



Overview of the System

° CGI frontend in Gauche (Scheme impl.)

e Derivation checkers in ML



Derivation Checker Generator

° Input: Specification of a formal system

° Output: ML functions for derivation checking

* Algorithm is independent of systems
* (parsing has to be implemented manually)

* Formal system description in TeX is also
generated

e LaTeX2MathML



Prelog:
DSL for Specifying Formal Systems
* Prelog: "Prelogical” framework :-)

° Formal system = syntax for objects and
judgments + inference rules

* Inference rules a /a Prolog

* Typechecking for inference rules

e Side conditions can be written in ML
° c.f. Ott by Swell et al.



A Specification Consists of:

e Syntax section

* BNF for objects (such as humbers, expressions)
e Declaration of metavariables

* Names decide their syntactic categories
 Judgments section
* (Abstract) syntax for judgments
° Rules section

* Inference rules in Prolog-like syntax

* Backquotes for side conditions



Examples

° NatExp: addition and multiplications of Peano
natural numbers

° EvalML1: evaluation of simple expressions w/

* Integers, Booleans
* Arithmetic and comparison operations

* Implemented in ML
e Conditionals



Typechecking Spec.

° Checks if inference rules respect syntactic
categories given in the Syntax section

* Syntactic categories as types
° injection as subtyping

e Side-conditions are not checked ;-(



Formal Systems Used in Class

Addition, multiplication, comparison of Peano numerals

Big-step semantics of core ML in stages
° Simple expressions

e Local declarations (and environments)

° Functions and recursions

e Lists and pattern matching

e References and continuations

De Brujin index and nameless evaluation

Simple and HM type systems



Plan of The Talk

e Graduate Course on the Formal Semantics of
Computer Programs

° Course overview
* Demo
* How the system is desighed and implemented
* Specification Language "Prelog”
* Implementation

* Concluding Remarks



Implementation Overview

° Typechecker (for Prelog)

° Prelog-to-OCaml translator in OCaml
* Datatypes for objects and judgments

* Function check_deriv: deriv — judgment

* Case analysis on the last rule used

* Pattern-matching the last deviration step and
the rule
e Relying mostly on ML
* Handling multiple occurrences of the same variable



You still have to implement ...

* Parser

° Pretty printer (pp.ml) for debugging

core.ml|
ocamlyacc |

y-----..»

Common pro



Bonus:

Derivation Generator Generator
Why: Useful for debugging questions

How:
° Mode analysis for logic programs

* Each judgment comes with annotation of which
arguments are inputs and which are outputs

e Checks if inference rules are "consistent” with the
annotations

° Search with backtracking



Mode Analysis
° Judgement: J(i; o)

* Rule: Jl(el f1) .. Jn(en, fn)
J(e,f)

* Parameters in ei can use parameters only in e, f1,
..., and fi-1

* Parameters in f can use parameters only in e,
f1, .., and fn



Summary of Prelog

° First-order syntax
* No need to implement pattern matching

° Shell-like Backquotes to implement side
conditions

* Once students learn how to formalize addition, they
don't want to care about it in later systems

° Typechecking formal system spec.



What I Learned

ML pattern matching is really GRRRREAT!

Code generation by printf is much better than
nothing but still annoying

Many duplications in derivation system specs

Most errors students make are syntax errors

* Parsers with helpful error messages are important



Why not MetaOCaml?

° No support for generating datatype
declarations

* Universal data structure to sidestep the problem

* No support for offline program generation
(until near future...?)



Related Work

* Twelf, Coq

* Hard for beginners

* Derivations are encoded (and put behind the scene)
* CAL [Sato,'97-] (implemented in elisp!)
* Used in an undergraduate course at Kyoto

* More emphasis on logic
* Our notations follow this system closely

° Prolog



* Ott [Sewell et al.'O7 ICFP]
* Probably we should integrate our system into this!

* SASYLF [Aldrich et al. '08 FDPE]

e (Another) implementation of Twelf
* Ott-like specification language

* Proof notation is closer to hand-written proofs
(than original Twelf)



Summary of the Talk

° E-Learning system for writing down formal
derivations

° Prelog: Metalanguage for specifying formal
systems

« Generation of derivation checkers and
generators



Some Statistics

° More than 100 users
* Well, # of students every year is only about 15
° 17 people solved all the questions

* Some people took less than 3 days!



	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29

