

An E-Learning System for
“The Formal Semantics of

Computer Programs”
and

Its Implementation by
Program Generation

Atsushi Igarashi
(Kyoto Univ.)

Plan of The Talk

Graduate Course on the Formal Semantics of
Computer Programs

Demo of the System

How the system is designed and implemented

Concluding Remarks

Formal Semantics of Computer Programs

Taught in Grad. Schl. of Informatics, Kyoto
U. for 12 yrs.

In 2013:
Big-step semantics of core ML, incl.

Lists and pattern matching
ML type system and HM type inference

Metatheory: type soundness, principal types, etc.

E-Learning system for self-study (2008-)

E-Learning System (2008-)

Exercise to write down concrete derivations
of evaluation and typing relations

To get used to derivations

To understand the object theory (i.e., ML) better

Web-based system (open to public)
Automated derivation checker(s)

150 questions

Demo

Plan of The Talk

Graduate Course on the Formal Semantics of
Computer Programs

Course overview

Demo of the System

How the system is designed and implemented

Concluding Remarks

Goals and Requirements

Goals

Gentle error messages

Minimal development time

No discrepancies btw. textbook and system

Requirements

Derivation checker
No formal metatheory needed

Handling many different formal systems

Three Options I Considered

Use of proof assistants (Coq, Twelf, …)
Kind of overkill

Indirect representation

Generic derivation checker

Derivation checker generator

Overview of the System

CGI frontend in Gauche (Scheme impl.)

Derivation checkers in ML

Derivation Checker Generator

Input: Specification of a formal system

Output: ML functions for derivation checking
Algorithm is independent of systems

(parsing has to be implemented manually)

Formal system description in TeX is also
generated

LaTeX2MathML

Prelog:
DSL for Specifying Formal Systems

Prelog: “Prelogical” framework :-)

Formal system = syntax for objects and
judgments + inference rules

Inference rules à la Prolog
Typechecking for inference rules

Side conditions can be written in ML

c.f. Ott by Swell et al.

A Specification Consists of:
Syntax section

BNF for objects (such as numbers, expressions)

Declaration of metavariables

Names decide their syntactic categories

Judgments section
(Abstract) syntax for judgments

Rules section
Inference rules in Prolog-like syntax

Backquotes for side conditions

Examples

NatExp: addition and multiplications of Peano
natural numbers

EvalML1: evaluation of simple expressions w/
Integers, Booleans

Arithmetic and comparison operations

Implemented in ML
Conditionals

Checks if inference rules respect syntactic
categories given in the Syntax section

Syntactic categories as types

injection as subtyping

Side-conditions are not checked ;-(

Typechecking Spec.

Formal Systems Used in Class
Addition, multiplication, comparison of Peano numerals

Big-step semantics of core ML in stages
Simple expressions

Local declarations (and environments)

Functions and recursions

Lists and pattern matching

References and continuations

De Brujin index and nameless evaluation

Simple and HM type systems

Plan of The Talk

Graduate Course on the Formal Semantics of
Computer Programs

Course overview

Demo

How the system is designed and implemented
Specification Language “Prelog”

Implementation

Concluding Remarks

Implementation Overview

Typechecker (for Prelog)

Prelog-to-OCaml translator in OCaml
Datatypes for objects and judgments

Function check_deriv: deriv judgment→

Case analysis on the last rule used
Pattern-matching the last deviration step and
the rule

Relying mostly on ML
Handling multiple occurrences of the same variable

You still have to implement ...

Parser

Pretty printer (pp.ml) for debugging

parser.mly

.gm

pp.ml

keywords.ml

parser.ml

core.ml

ocamlyacc

ocamlc
Derivation

checker

Common programs

Bonus:
Derivation Generator Generator

Why: Useful for debugging questions

How:

Mode analysis for logic programs
Each judgment comes with annotation of which
arguments are inputs and which are outputs

Checks if inference rules are “consistent” with the
annotations

Search with backtracking

Mode Analysis

Judgement: J(i; o)

Rule:

Parameters in ei can use parameters only in e, f1,
..., and fi-1

Parameters in f can use parameters only in e,
f1, ..., and fn

J1(e1, f1) ... Jn(en, fn)
J(e,f)

Summary of Prelog

First-order syntax
No need to implement pattern matching

Shell-like Backquotes to implement side
conditions

Once students learn how to formalize addition, they
don't want to care about it in later systems

Typechecking formal system spec.

What I Learned

ML pattern matching is really GRRRREAT!

Code generation by printf is much better than
nothing but still annoying

Many duplications in derivation system specs

Most errors students make are syntax errors
Parsers with helpful error messages are important

Why not MetaOCaml?

No support for generating datatype
declarations

Universal data structure to sidestep the problem

No support for offline program generation
(until near future...?)

Related Work

Twelf, Coq
Hard for beginners

Derivations are encoded (and put behind the scene)

CAL [Sato,'97-] (implemented in elisp!)
Used in an undergraduate course at Kyoto

More emphasis on logic
Our notations follow this system closely

Prolog

Ott [Sewell et al.'07 ICFP]
Probably we should integrate our system into this!

SASyLF [Aldrich et al. '08 FDPE]
(Another) implementation of Twelf

Ott-like specification language

Proof notation is closer to hand-written proofs
(than original Twelf)

Summary of the Talk

E-Learning system for writing down formal
derivations

Prelog: Metalanguage for specifying formal
systems

Generation of derivation checkers and
generators

Some Statistics

More than 100 users
Well, # of students every year is only about 15

17 people solved all the questions
Some people took less than 3 days!

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29

