Run Your
Component-Based Semantics

Thomas van Binsbergen
Royal Holloway, University of London, UK

Peter Mosses, Neil Sculthorpe
Swansea University, UK

WG 2.1 1 Meeting, London, UK, Novenber 2015

Related work: Redex

POPL 201 2:

Run Your Research
On the Effectiveness of Lightweight Mechanization

Casey Klein' John Clements®> Christos Dimoulas? Carl Eastlund® Matthias Felleisen®

Matthew Flatt* Jay A. McCarthy? Jon Rafkind* Sam Tobin-Hochstadt® Robert Bruce Findler!
PLT

» found flaws in formal semantics used in nine ICFP papers
» models formulated in Redex
- a domain-specific meta-language embedded in Racket

» DrRacket IDE runs programs based on their semantics

Racket example

(define-language Ac

(e (e e ...)
X
(A (x ...) e)
call/cc
+ (define red
number) (reduction-relation
(x variable- Ac/red #:domain e
(--> (1n-hole E (A e))
o
"abort")
(--> (in-hole E (call/cc v))
(in-hole E (v (A (x) (A (in-hole E x)))))
(fresh x)
"call/cc")
(--> (in-hole E ((A (x ..._1) e) v ..._1))
(in-hole E (subst e (x v) ...))
”‘BV")
(--> (in-hole E (+ number ...))

(in-hole E (X number ...))
"+")))

Related work: K

POPL'12, ACM, pp 533-544. 2012

An Executable Formal Semantics of C with Applications *

Chucky Ellison

Grigore Rosu

University of Illinois
{celliso2, grosu}@illinois.edu

Abstract

This paper describes an executable formal semantics of C. Being ex-
ecutable, the semantics has been thoroughly tested against the GCC
torture test suite and successfully passes 99.2% of 776 test programs.
It is the most complete and thoroughly tested formal definition of C
to date. The semantics yields an interpreter, debugger, state space
search tool, and model checker “for free”. The semantics is shown
capable of automatically finding program errors, both statically and
at runtime. It is also used to enumerate nondeterministic behavior.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Standardization, Verification.

1. Introduction

C provides just enough abstraction above assembly language for
programmers to get their work done without having to worry about
the details of the machines on which the programs run. Despite
this abstraction, C is also known for the ease in which it allows

a version of C that includes every language feature except for
_Complex and _Imaginary types, and that includes only a subset
of the standard library. Our semantics is the first arguably complete
dynamic semantics of C (see Section 2).

Above all else, our semantics has been motivated by the desire to
develop formal, yet practical tools. Our semantics was developed in
such a way that the single definition could be used immediately for
interpreting, debugging, or analysis (described in Section 6). At the
same time, this practicality does not mean that our definition is not
formal. Being written in a subset of rewriting logic (RL), it comes
with a complete proof system and initial model semantics [18].
Briefly, a rewrite system is a set of rules over terms constructed from
a signature. The rewrite rules match and apply everywhere, making
RL a simple, uniform, and general formal computational paradigm.
This is explained in greater detail in Section 3.

Our C semantics defines 150 C syntactic operators. The defini-
tions of these operators are given by 1,163 semantic rules spread
over 5,884 source lines of code (SLOC). However, it takes only
77 of those rules (536 SLOC) to cover the behavior of statements,
and another 163 for expressions (748 SLOC). There are 505 rules

K example

MODULE LAMBDA-SYNTAX

SYNTAX Exp ::= Val
| ExpExp [seqstrict]

, MODULE LAMBDA
SYNTAX Val ::= Ald.Exp [binder]
| 1d IMPORTS LAMBDA-SYNTAX+SUBSTITUTION
END MODULE CONFIGURATION:

Cr;PGM)

SYNTAX KResult ::= Val

[[-substitution

RULE (AX.E)V = E|V / X]

END MODULE

What is component-based semantics!?

bb evolving

programming

languages
translation ‘ ‘ l
- I stable reusable components
undamenta
constructs 910/01010]0/0)010)00,

open-ended repository

What are fundamental constructs?

Computation primitives and combinators

» sequential, if-then-else, while, bind, bound, scope,
allocate-initialised-variable, store-value, stored-value, ...

Value constants, operations, and types

» booleans, is-less-or-equal, not, integers, integer-add, (),
environments, map-unite, variables, values, types, ...

Values can be implicitly lifted to computations

» e.g.:while(hot(stored-value(bound(“b™))),...)

CBS

an external domain-specific meta-language

CBS: component-based specification
— denotational-style transiation

stmt ::= block

| 1d "=" aexp ;'
| "if' "(C' bexp ")' block ('else' block)? abstract Syntax
| 'while' "(' bexp '")' block
| stmt stmt
T — EE—

translation functions evaluate[[_:aexp]] : =>integers

S — N

execute[[I "=" AExp ";' 1] =
store—value(boxnd(id[[I 11), evaluate[[AExp 11)

e ————

translation equations

fundamental constructs

Fundamental construct specifications
— using CBS variant of modular SOS

Entity environment(p: environments) + _ —

Funcon scope(_:-—environments, :=T): =T

environment(p’/p) F X = X’

environment(p) + scope(p’, X) = scope(p’, X’)

scope(p, V:values) = V

10

Tool support

Tool support for CBS: IDE

The Spoofax Language Workbench

Spoofax is a platform for developing textual domain-specific languages with full-
featured Eclipse editor plugins.

metaborg.org/spoofax

Meta Languages

Language definitions in Spoofax are constructed using the following meta-
languages:

The SDF3 syntax definition formalism
The NaBL name binding language

The TS type specification language
The Stratego transformation language

12

http://metaborg.org/spoofax/
http://metaborg.org/spoofax/

Current tool support:

CBS-based program execution

language — funcons

program

language

language — funcons

CBS CBS — Stratego Stratego

program

funcons

Stratego

funcons

Haskell

13

Future tool support:
CBS-based interpreter generation

funcons

CBS

CBS — Haskell

funcons

Haskell

Stratego

14

vV v vV v

Demo

browsing/editing CBS specifications
translating programs to funcons
executing funcons

generating translators

15

Conclusion

Current version of CBS tools available for download
» www.plancomps.org/nwpt2015-tsc
» tested with pre-packaged Spoofax/Eclipse distribution
CBS scales up to larger languages
» CAML LIGHT [Modularity’ 4 special issue, Trans. AOSD, 2015]
» C# [work in progress]
Fundamental constructs (funcons) appear to be

highly reusable components

16

http://www.plancomps.org/nwpt2015-tsc
http://www.plancomps.org/nwpt2015-tsc
http://metaborg.org/download/
http://metaborg.org/download/

