
Run Your
Component-Based Semantics

Thomas van Binsbergen
Royal Holloway, University of London, UK

Peter Mosses, Neil Sculthorpe
Swansea University, UK

WG 2.11 Meeting, London, UK, Novenber 2015

1

Related work: Redex

POPL 2012:

‣ found flaws in formal semantics used in nine ICFP papers

‣ models formulated in Redex

- a domain-specific meta-language embedded in Racket

‣ DrRacket IDE runs programs based on their semantics

Run Your Research
On the Effectiveness of Lightweight Mechanization

Casey Klein1 John Clements2 Christos Dimoulas3 Carl Eastlund3 Matthias Felleisen3

Matthew Flatt4 Jay A. McCarthy5 Jon Rafkind4 Sam Tobin-Hochstadt3 Robert Bruce Findler1

PLT
1Northwestern University, Evanston, IL 2California Polytechnic State University, San Luis Obispo, CA

3Northeastern University, Boston, MA 4University of Utah, Salt Lake City, UT 5Brigham Young University, Provo, UT

Abstract
Formal models serve in many roles in the programming language
community. In its primary role, a model communicates the idea of a
language design; the architecture of a language tool; or the essence
of a program analysis. No matter which role it plays, however, a
faulty model doesn’t serve its purpose.

One way to eliminate flaws from a model is to write it down in
a mechanized formal language. It is then possible to state theorems
about the model, to prove them, and to check the proofs. Over
the past nine years, PLT has developed and explored a lightweight
version of this approach, dubbed Redex. In a nutshell, Redex is a
domain-specific language for semantic models that is embedded
in the Racket programming language. The effort of creating a
model in Redex is often no more burdensome than typesetting it
with LaTeX; the difference is that Redex comes with tools for the
semantics engineering life cycle.

In this paper we report on a validation of this form of lightweight
mechanization. The largest part of this validation concerns the for-
malization and exploration of nine ICFP 2009 papers in Redex,
an effort that uncovered mistakes in all nine papers. The results
suggest that Redex-based lightweight modeling is effective and
easy to integrate into the work flow of a semantics engineer. This
experience also suggests lessons for the developers of other mech-
anization tools.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics
General Terms Design, Reliability, Theory
Keywords Lightweight Semantics Engineering

1. The Role of Language Models
Programming language researchers use formal models to commu-
nicate ideas in a concise manner. Many of their models explain a
small piece of language design, perhaps a new linguistic construct
or a new type system. Other models express the essence of a com-
piler transformation, the software architecture of an IDE tool, or
the workings of a program analysis. For decades researchers have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright © 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

used paper and pencil to develop these models. Paper-and-pencil
models come with flaws, however. Since flawed models can lead
to miscommunications, researchers state and prove theorems about
models, which forces them to “debug” the model.

Some flaws nevertheless survive this paper-only validation step,
and others are introduced during typesetting. These mistakes be-
come obstacles to communication. For example, Martin Henz from
National University of Singapore recently shared with one of this
paper’s authors his frustration with a historic paper (Plotkin 1975):

The readability is not helped by the fact that there are lots
of typos, e.g. page 134, Rule II 1: M = N should be M = M.
The rule II 3 on page 136 is missing the subscript 1 above
the bar. [personal communication, 6/4/2011]

Once the reader understands a model, fixing such typos is straight-
forward. But during the initial struggle with the paper, flawed rules
may pose seemingly insurmountable obstacles to the reader. In con-
trast, authors who have spent months or years exploring the intrica-
cies of their model are prone to discount the significance of typos
and small mistakes even if readers report extreme frustration.

Over the past decade, mechanized theorem proving has come
into its own as one alternative to the paper-and-pencil approach (Ay-
demir et al. 2005). In this world, researchers “program” their
models in formal languages, state theorems, and create machine-
checked proofs. We consider this kind of theorem proving heavy-
weight, because it requires more explicit details than programming.

An alternative is to program models in functional languages
such as Haskell: creating interpreters, typecheckers, etc. This ap-
proach provides important mechanical scrutiny, but the gap be-
tween the program and what appears in a paper’s figures tends to
make the task laborious and reduces the strength of the validation.

With these considerations in
mind, PLT has developed Re-
dex (Matthews et al. 2004;
Felleisen et al. 2010), an ex-
ecutable domain-specific lan-
guage for mechanizing seman-
tic models. The philosophy of
Redex is to treat semantic mod-
els as software artifacts just
like plain software systems. As
such, semantic models have a
life cycle, and the life cycle idea
for semantic models is similar to
the one of software systems. Using Redex a semantics engineer for-
mulates the syntax and semantics of the model; creates test suites;

2

(define-language Lc
(e (e e ...)

x
(l (x ...) e)
call/cc
+
number)

(x variable-not-otherwise-mentioned))

(define-extended-language
Lc/red Lc
(e (A e))
(v (l (x ...) e)

call/cc
+
number)

(E (v ... E e ...)
hole))

Figure 1: l-calculus plus call/cc

(define red
(reduction-relation

Lc/red #:domain e
(--> (in-hole E (A e))

e
"abort")

(--> (in-hole E (call/cc v))
(in-hole E (v (l (x) (A (in-hole E x)))))
(fresh x)
"call/cc")

(--> (in-hole E ((l (x ..._1) e) v ..._1))
(in-hole E (subst e (x v) ...))
"bv")

(--> (in-hole E (+ number ...))
(in-hole E (S number ...))
"+")))

Figure 2: The Lc reductions

runs random tests on conjectures; uses graphical tools for visualiz-
ing examples and debugging; and automatically renders the model
as a PDF snippet.

It is our hypothesis that small Redex efforts quickly pay off for
the working semantics engineer. To validate our hypothesis, we
conducted two case studies, and this paper presents the results of
these studies. The first shows how Redex helps test a language
implementation with a language model. The second shows that the
Redex methodology applies to a broad spectrum of contemporary
research papers. Specifically, the authors encoded nine ICFP 2009
papers in Redex; equipped the models with unit tests; translated
formal and informal claims into testable conjectures; and checked
their validity. In the process, we found mistakes in all of the papers,
including one whose essential result had been verified in Coq.

The next section reviews the Redex modeling language and tool
suite. From there, the paper covers ten case studies. Our experience
suggests lessons for the authors of semantic models as well as the
designers of validation tools; we discuss these lessons in the paper’s
final sections, along with related work.

2. Welcome to Redex
Semantics engineers use the Redex language to write down the
grammar, reductions, and metafunctions for calculi or transition
systems. The language is a domain-specific language embedded
in Racket. Redex programmers inherit the DrRacket IDE, a large
standard library, and a large set of user-contributed libraries. The
Redex toolkit covers a variety of tasks related to executing seman-
tics definitions: a stepper for small-step operational semantics; in-
spectors for reduction graphs; a unit testing framework; a tool for
randomized testing à la QuickCheck (Claessen and Hughes 2000);
and automatic typesetting support.

From a linguistic perspective, Redex is a strict functional lan-
guage with a powerful pattern matcher and domain-specific con-
structs supporting operational semantics. This section illustrates
Redex with a model of the l-calculus, extended with call/cc.

2.1 Grammars
The left-hand side of figure 1 shows the grammar of the language
and the corresponding Redex code. The latter binds the Racket-
level variable Lc to a Redex language, a series of non-terminals
and alternatives. In this case, there are two non-terminals, and
. The non-terminal has six alternatives. The first, application

expressions, uses an ellipsis to indicate repetition. In this case,
the ellipsis amounts to insisting that each application expression
consist of at least one sub-expression. Similarly, the third alterna-
tive uses an ellipsis to indicate that l expressions can bind an ar-
bitrary number of variables. The fourth and fifth alternatives are
constants, and , leaving and , two other non-
terminals. The non-terminal is built-in and matches arbi-
trary Racket numbers. The production for uses the special key-
word variable-not-otherwise-mentioned. It matches any
symbol except , , and because they are used as termi-
nal symbols elsewhere in the grammar.

To give a reduction semantics to Lc, we add an alternative to
and define two extra non-terminals. The right-hand side of figure 1
shows both the mathematical extension and the Redex code.

The first position in a define-extended-language form
names the new language and the second names to the to-be-
extended language. Non-terminals appearing in the body of define-
extended-language replace those of the same name in the old
language, unless a appears, in which case the non-terminal is
extended. In this case, we extend with the expression form ,
which we use to give a reduction semantics for continuations.

Racket example

(define-language Lc
(e (e e ...)

x
(l (x ...) e)
call/cc
+
number)

(x variable-not-otherwise-mentioned))

(define-extended-language
Lc/red Lc
(e (A e))
(v (l (x ...) e)

call/cc
+
number)

(E (v ... E e ...)
hole))

Figure 1: l-calculus plus call/cc

(define red
(reduction-relation

Lc/red #:domain e
(--> (in-hole E (A e))

e
"abort")

(--> (in-hole E (call/cc v))
(in-hole E (v (l (x) (A (in-hole E x)))))
(fresh x)
"call/cc")

(--> (in-hole E ((l (x ..._1) e) v ..._1))
(in-hole E (subst e (x v) ...))
"bv")

(--> (in-hole E (+ number ...))
(in-hole E (S number ...))
"+")))

Figure 2: The Lc reductions

runs random tests on conjectures; uses graphical tools for visualiz-
ing examples and debugging; and automatically renders the model
as a PDF snippet.

It is our hypothesis that small Redex efforts quickly pay off for
the working semantics engineer. To validate our hypothesis, we
conducted two case studies, and this paper presents the results of
these studies. The first shows how Redex helps test a language
implementation with a language model. The second shows that the
Redex methodology applies to a broad spectrum of contemporary
research papers. Specifically, the authors encoded nine ICFP 2009
papers in Redex; equipped the models with unit tests; translated
formal and informal claims into testable conjectures; and checked
their validity. In the process, we found mistakes in all of the papers,
including one whose essential result had been verified in Coq.

The next section reviews the Redex modeling language and tool
suite. From there, the paper covers ten case studies. Our experience
suggests lessons for the authors of semantic models as well as the
designers of validation tools; we discuss these lessons in the paper’s
final sections, along with related work.

2. Welcome to Redex
Semantics engineers use the Redex language to write down the
grammar, reductions, and metafunctions for calculi or transition
systems. The language is a domain-specific language embedded
in Racket. Redex programmers inherit the DrRacket IDE, a large
standard library, and a large set of user-contributed libraries. The
Redex toolkit covers a variety of tasks related to executing seman-
tics definitions: a stepper for small-step operational semantics; in-
spectors for reduction graphs; a unit testing framework; a tool for
randomized testing à la QuickCheck (Claessen and Hughes 2000);
and automatic typesetting support.

From a linguistic perspective, Redex is a strict functional lan-
guage with a powerful pattern matcher and domain-specific con-
structs supporting operational semantics. This section illustrates
Redex with a model of the l-calculus, extended with call/cc.

2.1 Grammars
The left-hand side of figure 1 shows the grammar of the language
and the corresponding Redex code. The latter binds the Racket-
level variable Lc to a Redex language, a series of non-terminals
and alternatives. In this case, there are two non-terminals, and
. The non-terminal has six alternatives. The first, application

expressions, uses an ellipsis to indicate repetition. In this case,
the ellipsis amounts to insisting that each application expression
consist of at least one sub-expression. Similarly, the third alterna-
tive uses an ellipsis to indicate that l expressions can bind an ar-
bitrary number of variables. The fourth and fifth alternatives are
constants, and , leaving and , two other non-
terminals. The non-terminal is built-in and matches arbi-
trary Racket numbers. The production for uses the special key-
word variable-not-otherwise-mentioned. It matches any
symbol except , , and because they are used as termi-
nal symbols elsewhere in the grammar.

To give a reduction semantics to Lc, we add an alternative to
and define two extra non-terminals. The right-hand side of figure 1
shows both the mathematical extension and the Redex code.

The first position in a define-extended-language form
names the new language and the second names to the to-be-
extended language. Non-terminals appearing in the body of define-
extended-language replace those of the same name in the old
language, unless a appears, in which case the non-terminal is
extended. In this case, we extend with the expression form ,
which we use to give a reduction semantics for continuations.

3

Related work: K

An Executable Formal Semantics of C with Applications ⇤

Chucky Ellison Grigore Ros, u
University of Illinois

{celliso2, grosu}@illinois.edu

Abstract
This paper describes an executable formal semantics of C. Being ex-
ecutable, the semantics has been thoroughly tested against the GCC
torture test suite and successfully passes 99.2% of 776 test programs.
It is the most complete and thoroughly tested formal definition of C
to date. The semantics yields an interpreter, debugger, state space
search tool, and model checker “for free”. The semantics is shown
capable of automatically finding program errors, both statically and
at runtime. It is also used to enumerate nondeterministic behavior.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Standardization, Verification.

1. Introduction
C provides just enough abstraction above assembly language for
programmers to get their work done without having to worry about
the details of the machines on which the programs run. Despite
this abstraction, C is also known for the ease in which it allows
programmers to write buggy programs. With no runtime checks
and little static checking, in C the programmer is to be trusted
entirely. Despite the abstraction, the language is still low-level
enough that programmers can take advantage of assumptions about
the underlying architecture. Trust in the programmer and the ability
to write non-portable code are actually two of the design principles
under which the C standard was written [14]. These ideas often work
in concert to yield intricate, platform-dependent bugs. The potential
subtlety of C bugs makes it an excellent candidate for formalization,
as subtle bugs can often be caught only by more rigorous means.

In this paper, we present a formal semantics of C that can be used
for finding bugs. Rather than being an “on paper” semantics, it is
executable, machine readable, and has been tested against the GCC
torture tests (see Section 5). The semantics describes the features of
the C99 standard [13], but we often cite the text from the proposed
C1X standard [15]. We use the C1X text because it will eventually
supersede the C99 standard, and because it o↵ers clearer wording
and more explicit descriptions of certain kinds of behavior.

Our semantics can be considered a freestanding implementation
of C99. The standard defines a freestanding implementation as

⇤ Supported in part by NSA contract H98230-10-C-0294 and by (Romanian)
SMIS-CSNR 602-12516 contract no. 161/15.06.2010.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

a version of C that includes every language feature except for
_Complex and _Imaginary types, and that includes only a subset
of the standard library. Our semantics is the first arguably complete
dynamic semantics of C (see Section 2).

Above all else, our semantics has been motivated by the desire to
develop formal, yet practical tools. Our semantics was developed in
such a way that the single definition could be used immediately for
interpreting, debugging, or analysis (described in Section 6). At the
same time, this practicality does not mean that our definition is not
formal. Being written in a subset of rewriting logic (RL), it comes
with a complete proof system and initial model semantics [18].
Briefly, a rewrite system is a set of rules over terms constructed from
a signature. The rewrite rules match and apply everywhere, making
RL a simple, uniform, and general formal computational paradigm.
This is explained in greater detail in Section 3.

Our C semantics defines 150 C syntactic operators. The defini-
tions of these operators are given by 1,163 semantic rules spread
over 5,884 source lines of code (SLOC). However, it takes only
77 of those rules (536 SLOC) to cover the behavior of statements,
and another 163 for expressions (748 SLOC). There are 505 rules
for dealing with declarations and types, 115 rules for memory, and
189 technical rules defining helper operators. Finally, there are 114
rules for the core of our standard library. The semantics itself is
described in more detail in Section 4, and is available in its entirety
at http://c-semantics.googlecode.com/.

Contributions The specific contributions of this paper include:

• a detailed comparison of other C formalizations;
• the most comprehensive formal semantics of C to date, which is

executable and has been thoroughly tested;
• demonstrations as to its utility in discovering program flaws;
• constructive evidence that rewriting-based semantics scale.

Features Our semantics captures every feature required by the
C99 standard. We include a partial list here to give an idea of
the completeness, and explain any shortcomings in Section 7. All
aspects related to the below features are included and are given a
direct semantics (not by a translation to other features):

• Expressions: referencing and dereferencing, casts, array index-
ing (a[i]), structure members (-> and .), arithmetic, bitwise,
and logical operators, sizeof, increment and decrement, assign-
ments, sequencing (_,_), ternary conditional (_?_:_);
• Statements: for, do-while, while, if, if/else, switch,
goto, break, continue, return;
• Types and Declarations: enums, structs, unions, bitfields,

initializers, static storage, typedefs, variable length arrays;
• Values: regular scalar values (signed/unsigned arithmetic and

pointer types), structs, unions, compound literals;
• Standard Library: malloc/free, set/longjmp, basic I/O;
• Conversions: (implicit) argument and parameter promotions and

arithmetic conversion, and (explicit) casts.

POPL'12, ACM, pp 533-544. 2012

4

K example

Introductory notes

Our generic substitution currently expects binding constructs to contain precisely two arguments, first being an id which is to
be bound in the second. To signal that a construct is a binding one needs to add this attribute to the syntax declaration.

The running configuration must contain the hi k cell, holding the computation, i.e., the �-expression to be evaluated.

We also need to specify that Values are to be treated as finished computations, or results. We do so by including them in the
KResult category.

MODULE LAMBDA-SYNTAX

SYNTAX Exp ::= Val

| ExpExp [seqstrict]

SYNTAX Val ::= �Id.Exp [binder]
| Id

END MODULE

MODULE LAMBDA

IMPORTS LAMBDA-SYNTAX+SUBSTITUTION

CONFIGURATION:

$PGM

k

SYNTAX KResult ::= Val

�-substitution

RULE (�X .E)V) E [V / X]

END MODULE

Introductory notes

Our generic substitution currently expects binding constructs to contain precisely two arguments, first being an id which is to
be bound in the second. To signal that a construct is a binding one needs to add this attribute to the syntax declaration.

The running configuration must contain the hi k cell, holding the computation, i.e., the �-expression to be evaluated.

We also need to specify that Values are to be treated as finished computations, or results. We do so by including them in the
KResult category.

MODULE LAMBDA-SYNTAX

SYNTAX Exp ::= Val

| ExpExp [seqstrict]

SYNTAX Val ::= �Id.Exp [binder]
| Id

END MODULE

MODULE LAMBDA

IMPORTS LAMBDA-SYNTAX+SUBSTITUTION

CONFIGURATION:

$PGM

k

SYNTAX KResult ::= Val

�-substitution

RULE (�X .E)V) E [V / X]

END MODULE

5

bb

programming
languages …

What is component-based semantics?

translation

fundamental
constructs

stable reusable components

evolving

…

open-ended repository

6

What are fundamental constructs?

Computation primitives and combinators

‣ sequential, if-then-else, while, bind, bound, scope,
allocate-initialised-variable, store-value, stored-value, …

Value constants, operations, and types

‣ booleans, is-less-or-equal, not, integers, integer-add, (),
environments, map-unite, variables, values, types, …

Values can be implicitly lifted to computations

‣ e.g.: while(not(stored-value(bound(“b”))), …)

7

CBS
an external domain-specific meta-language

8

CBS: component-based specification
– denotational-style translation

IMP-3.cbs

Language "IMP" Section 3 Statements and blocks

Syntax
 Stmt : stmt ::= block
 | id '=' aexp ';'
 | 'if' '(' bexp ')' block ('else' block)?
 | 'while' '(' bexp ')' block
 | stmt stmt
Syntax
 Block : block ::= '{' stmt? '}'

Rule
 [['if' '(' BExp ')' Block]] =
 [['if' '(' BExp ')' Block 'else' '{' '}']]

Semantics
 execute[[_:stmt]] : =>()
Rule
 execute[[I '=' AExp ';']] =

store-value(bound(id[[I]]), evaluate[[AExp]])
Rule
 execute[['if' '(' BExp ')' Block1 'else' Block2]] =

if-then-else(evaluate[[BExp]],
 execute[[Block1]],
 execute[[Block2]])

Rule
 execute[['while' '(' BExp ')' Block]] =

while(evaluate[[BExp]], execute[[Block]])
Rule
 execute[[Stmt1 Stmt2]] =

sequential(execute[[Stmt1]], execute[[Stmt2]])
Rule
 execute[['{' '}']] = ()
Rule
 execute[['{' Stmt '}']] = execute[[Stmt]]

Page 1

abstract syntax

IMP-3.cbs

Language "IMP" Section 3 Statements and blocks

Syntax
 Stmt : stmt ::= block
 | id '=' aexp ';'
 | 'if' '(' bexp ')' block ('else' block)?
 | 'while' '(' bexp ')' block
 | stmt stmt
Syntax
 Block : block ::= '{' stmt? '}'

Rule
 [['if' '(' BExp ')' Block]] =
 [['if' '(' BExp ')' Block 'else' '{' '}']]

Semantics
 execute[[_:stmt]] : =>()
Rule
 execute[[I '=' AExp ';']] =

store-value(bound(id[[I]]), evaluate[[AExp]])
Rule
 execute[['if' '(' BExp ')' Block1 'else' Block2]] =

if-then-else(evaluate[[BExp]],
 execute[[Block1]],
 execute[[Block2]])

Rule
 execute[['while' '(' BExp ')' Block]] =

while(evaluate[[BExp]], execute[[Block]])
Rule
 execute[[Stmt1 Stmt2]] =

sequential(execute[[Stmt1]], execute[[Stmt2]])
Rule
 execute[['{' '}']] = ()
Rule
 execute[['{' Stmt '}']] = execute[[Stmt]]

Page 1

translation equations
fundamental constructs

IMP-1.cbs

Language "IMP" Section 1 Arithmetic expressions

Syntax
 AExp : aexp ::= num
 | id
 | aexp '+' aexp
 | aexp '/' aexp
 | '(' aexp ')'

Semantics
 evaluate[[_:aexp]] : =>integers
Rule
 evaluate[[N]] = value[[N]]
Rule
 evaluate[[I]] = stored-value(bound(id[[I]]))
Rule
 evaluate[[AExp1 '+' AExp2]] =

integer-add(evaluate[[AExp1]], evaluate[[AExp2]])
Rule
 evaluate[[AExp1 '/' AExp2]] =

integer-divide(evaluate[[AExp1]], evaluate[[AExp2]])
Rule
 evaluate[['(' AExp ')']] = evaluate[[AExp]]

Syntax
 N : num ::= '-'? decimal
Lexis
 D : decimal ::= ('0'-'9')+
Semantics
 value[[_:num]] : integers
Rule
 value[[D]] = decimal-natural(\"D\")
Rule
 value[['-' D]] = integer-negate(value[[D]])

Lexis
 I : id ::= ('A'-'Z'|'a'-'z')+
Semantics
 id[[_:id]] : ids
Rule
 id[[I]] = \"I\"

Page 1

translation functions

9

Fundamental construct specifications
– using CBS variant of modular SOS

 environment(ρ′/ρ) ⊢ X → X′

environment(ρ) ⊢ scope(ρ′, X) → scope(ρ′, X′)

environment(ρ) ⊢ scope(ρ, V: values) → V

Funcon scope(_ : ⇒environments, _ : ⇒T) : ⇒T

Entity environment(ρ: environments) ⊢ _ → _

environment(ρ) ⊢ D → D′

environment(ρ) ⊢ scope(D, X) → scope(D′, X)

10

Tool support

11

Tool support for CBS: IDE

The Spoofax Language Workbench
Spoofax is a platform for developing textual domain-specific languages with full-
featured Eclipse editor plugins.

With the Spoofax language workbench, you can write the grammar of your
language using the high-level SDF grammar formalism. Based on this grammar,
basic editor services such as syntax highlighting and code folding are
automatically provided. Using high-level descriptor languages, these services can
be customized. More sophisticated services such as error marking and content
completion can be specified using rewrite rules in the Stratego language.

Meta Languages

Language definitions in Spoofax are constructed using the following meta-
languages:

The SDF3 syntax definition formalism
The NaBL name binding language
The TS type specification language
The Stratego transformation language

Spoofax Resources

Features
Tour
Download & Installation
Documentation
Frequently Asked Questions
Research

METABORG

menu

The Spoofax Language Workbench
Spoofax is a platform for developing textual domain-specific languages with full-
featured Eclipse editor plugins.

With the Spoofax language workbench, you can write the grammar of your
language using the high-level SDF grammar formalism. Based on this grammar,
basic editor services such as syntax highlighting and code folding are
automatically provided. Using high-level descriptor languages, these services can
be customized. More sophisticated services such as error marking and content
completion can be specified using rewrite rules in the Stratego language.

Meta Languages

Language definitions in Spoofax are constructed using the following meta-
languages:

The SDF3 syntax definition formalism
The NaBL name binding language
The TS type specification language
The Stratego transformation language

Spoofax Resources

Features
Tour
Download & Installation
Documentation
Frequently Asked Questions
Research

METABORG

menu

metaborg.org/spoofax

12

http://metaborg.org/spoofax/
http://metaborg.org/spoofax/

Current tool support:
CBS-based program execution

language → funconslanguage → funconslanguage → funcons

CBS CBS → StrategoCBS → StrategoCBS → Stratego

Stratego

language → funconslanguage → funconslanguage → funcons

Stratego

program

language

program

funcons

funcons

Haskell

13

Future tool support:
CBS-based interpreter generation

CBS → HaskellCBS → HaskellCBS → Haskell

Stratego

funcons

CBS

funcons

Haskell

14

Demo

‣ browsing/editing CBS specifications

‣ translating programs to funcons

‣ executing funcons

‣ generating translators

15

Conclusion

Current version of CBS tools available for download

‣ www.plancomps.org/nwpt2015-tsc

‣ tested with pre-packaged Spoofax/Eclipse distribution

CBS scales up to larger languages

‣ CAML LIGHT [Modularity’14 special issue,Trans. AOSD, 2015]

‣ C# [work in progress]

Fundamental constructs (funcons) appear to be

highly reusable components

16

http://www.plancomps.org/nwpt2015-tsc
http://www.plancomps.org/nwpt2015-tsc
http://metaborg.org/download/
http://metaborg.org/download/

