
Compiling Low-level Radio
Protocols

Geoffrey Mainland

IFIP WG 2.11

Geoffrey Mainland—Drexel University

Motivation
•Lots of innovation in PHY/MAC design.
•Modern wireless PHYs require fast DSP.
•Easy to program? fast? portable?

•GnuRadio: easy to program, but slow.
•SORA, Warp: fast, but difficult to program, and

code is non-portable.
•We want all three!

�2

Geoffrey Mainland—Drexel University

Problems for Implementors
•CPU platforms (SORA)

•Vectorization, CPU placement, cache use.
•FPGA platforms (Warp, Zynq)

•Latency-sensitive design, difficult for new students/
researchers to get started.

•Portability/readability
•Manually highly-optimized code is difficult to read/

maintain/modify.
•Impossible to target another platform.

�3

Geoffrey Mainland—Drexel University

What makes wireless special?
•Large degree of separation between data and

control.
•Makes providing the right abstractions challenging.

•Absolutely requires low-latency stream processing.
•Makes (efficient) compilation challenging.

�4

Geoffrey Mainland—Drexel University

Research Goals
•Language Properties:

•Easy to read/write (high-level).
•Easy to reason about (useful as a specification

language).
•General domain-specific abstractions (makes

portability possible).
•Implementation Properties:

•Fast!
•Multiple back-ends (makes portability a reality).

�5

Geoffrey Mainland—Drexel University

Ziria
•Wireless code written in a high-level language.
•Compiler deals with low-level code optimization.
•Provides language abstractions that are intuitive,

expressive, and appropriate for the domain.
•Implements efficient compilation scheme(s).
•Original implementation was joint work with Gordon

Stewart, Mahanth Gowda, Dimitrios Vytiniotis, and
Bozidar Radunovic.

•Competitive with Sora, hand-written C++ 802.11
stack.

�6

Geoffrey Mainland—Drexel University

Ziria: A Two-layer Design
•Lower-level

•Imperative C-like code for manipulating bits, bytes,
arrays, etc.

•Higher-level
•Monadic language for specifying and composing

stream processors.
•Enforces clean separation between control and data

flow.
•Monadic stream language enables aggressive

compiler optimizations.
�7

Geoffrey Mainland—Drexel University

•Predominant abstraction is a dataflow graph where
processing occurs at the vertices (GnuRadio, SORA,
StreamIt).

•A reasonable execution model, but not a great
programming model.

Existing Abstractions

�8

Events (messages) in

Events (messages) out

Why are data flow graphs unsatisfactory?

• When is vertex state initialized?

• How can “control” messages change a vertex’s behavior?

• How can a vertex send a “control” message to another vertex,
perhaps one to which it is not immediately connected?

• How can we jointly optimize interacting vertices’ operations?

Geoffrey Mainland—Drexel University

Control-Aware Stream Abstractions

�9

Stream transformer t
of type:

ST T a b

Stream computer c of
type:

ST (C v) a b

t

a

b

c

a

b

v
control value

stream input

stream output
Transformer/

computer index

Geoffrey Mainland—Drexel University

Control-Aware Stream Abstractions

�10

map :: (a→b) → ST T a b
repeat :: ST (C ()) a b → ST T a b

take :: ST (C a) a b
emit :: b → ST (C ()) a b

t

a

b

stream input

stream output

c

a

b

v
control value

Geoffrey Mainland—Drexel University

“Horizontal” and “Vertical” Composition

�11

(>>>) :: ST T a b → ST T b c → ST T a c
(>>>) :: ST (C v) a b → ST T b c → ST (C v) a c
(>>>) :: ST T a b → ST (C v) b c → ST (C v) a c

(>>=) :: ST (C v) a b → (v → ST ω a b)→ ST ω a b
return :: v → ST (C v) a b

Composition along control
path (like a monad)

Composition along data
path (like an arrow)

Geoffrey Mainland—Drexel University

Creating a Pipeline

�12

{ v ← (c1 >>> t1)
; t2 >>> t3
} t1

c1
c t2

t3

t

Geoffrey Mainland—Drexel University

WiFi Receiver (simplified)

�13

removeDC

Detect
Carrier

Channel
Estimation

Invert
Channel

Decode
Header

Decode
Packet

Packet
start

Channel
Info

Invert
Channel

Packet
Info

Transformer

Computer

Geoffrey Mainland—Drexel University

New Language/Compiler
•Uniform surface language (requires new types).
•Pure, monadic core (intermediate) language.
•Well-defined semantics for core language (PLT

Redex).
•Compiler is a series of transformations on the typed

intermediate language.
•More recently: generics and type-level Nat.

�14

Geoffrey Mainland—Drexel University

Example: Scrambler

�15

IEEE
Std 802.11a-1999 SUPPLEMENT TO IEEE STANDARD FOR INFORMATION TECHNOLOGY—

16 Copyright © 1999 IEEE. All rights reserved.

17.3.5.4 PLCP DATA scrambler and descrambler

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be scrambled with a length-127
frame-synchronous scrambler. The octets of the PSDU are placed in the transmit serial bit stream, bit 0 first
and bit 7 last. The frame synchronous scrambler uses the generator polynomial S(x) as follows, and is illus-
trated in Figure 113:

(14)

The 127-bit sequence generated repeatedly by the scrambler shall be (leftmost used first), 00001110
11110010 11001001 00000010 00100110 00101110 10110110 00001100 11010100 11100111 10110100
00101010 11111010 01010001 10111000 1111111, when the “all ones” initial state is used. The same
scrambler is used to scramble transmit data and to descramble receive data. When transmitting, the initial
state of the scrambler will be set to a pseudo random non-zero state. The seven LSBs of the SERVICE field
will be set to all zeros prior to scrambling to enable estimation of the initial state of the scrambler in
the receiver.

An example of the scrambler output is illustrated in Annex G (G.5.2).

17.3.5.5 Convolutional encoder

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, shall be coded with a convolutional
encoder of coding rate R = 1/2, 2/3, or 3/4, corresponding to the desired data rate. The convolutional encoder
shall use the industry-standard generator polynomials, g0 = 1338 and g1 = 1718, of rate R = 1/2, as shown in
Figure 114. The bit denoted as “A” shall be output from the encoder before the bit denoted as “B.” Higher
rates are derived from it by employing “puncturing.” Puncturing is a procedure for omitting some of the
encoded bits in the transmitter (thus reducing the number of transmitted bits and increasing the coding rate)
and inserting a dummy “zero” metric into the convolutional decoder on the receive side in place of the omit-
ted bits. The puncturing patterns are illustrated in Figure 115. Decoding by the Viterbi algorithm is
recommended.

An example of encoding operation is shown in Annex G (G.6.1).

S x() x7 x4 1+ +=

Figure 113—Data scrambler

X7 X6 X5 X4 X3 X2 X1

Data In

Descrambled
Data Out

Scrambler Diagram from 802.11 Standard

fun scrambler() {
 let mut tmp : bit;

 repeat {
 x <- take;
 tmp = (scrmbl_st[3] ^ scrmbl_st[0]);
 scrmbl_st[0:5] = scrmbl_st[1:6];
 scrmbl_st[6] = tmp;
 emit x ^ tmp;
 }
}

Geoffrey Mainland—Drexel University

Observations about Scrambler

•Executable specification.
•Not very efficient to operate one bit at a time.
•If we could make the scrambler operate a byte at a

time, we could convert it to a lookup table.
�16

fun scrambler() {
 let mut tmp : bit;

 repeat {
 x <- take;
 tmp = (scrmbl_st[3] ^ scrmbl_st[0]);
 scrmbl_st[0:5] = scrmbl_st[1:6];
 scrmbl_st[6] = tmp;
 emit x ^ tmp;
 }
}

Geoffrey Mainland—Drexel University

Let’s Fix the Scramble

•Now the pipeline reads
and writes bytes!

•If only we could
somehow fuse these
computations together…

•We can, with the fusion
transformation.

�17

repeat {
 xs <- take;
 for i in 0..8
 emit xs[i];
}
>>>
scrambler()
>>>
{
 let mut xs : [bit;8]

 repeat {
 for i in 0..8 {
 x <- take;
 xs[i] = x;
 }
 emit xs;
 }
}

Array of 8 bits

Geoffrey Mainland—Drexel University

Fusion

�18

repeat { x ← take; emit f(x) } >>>
repeat { x ← take; emit g(x) }

repeat { x ← take; emit g(f(x)) }

Can be fused to:

•The original Ziria compiler went to great lengths to
perform “auto-mapping.”

•Our fusion transformation can fuse much more, including
repeat loops and for loops with known bounds.

•Fusion is “just” an abstract interpretation of the
operational semantics.  

Geoffrey Mainland—Drexel University

Putting it All Together

Now that we have fusion,
how do we know where
to place coercions like
these?

�19

repeat {
 xs <- take;
 for i in 0..8
 emit xs[i];
}
>>>
scrambler()
>>>
{
 let mut xs : [bit;8]

 repeat {
 for i in 0..8 {
 x <- take;
 xs[i] = x;
 }
 emit xs;
 }
}

Geoffrey Mainland—Drexel University

Scrambler in the 6Mbps Pipeline

•The compiler performs rate analysis to figure out the input/
output “shape” of individual components. Previous compiler
required annotations.

• ︎ The pipeline coalescing transformation inserts coercions to
widen the pipeline, as with the scrambler on the previous slide,
and to perform “impedance matching.”

• ︎ Finally, fusion eliminates >>>.

�20

crc24(len, true) >>> 
scrambler(default_scrmbl_st) >>>
encode12() >>> 
interleaver_bpsk() >>>
modulate_bpsk()

[8,24]
[1,1]
[1,2]
[48,48]
[1,1]

Geoffrey Mainland—Drexel University

TX Performance

�21

0

100

200

300

TX 6M
bp

s

TX 9M
bp

s

TX 12
Mbp

s

TX 18
Mbp

s

TX 24
Mbp

s

TX 36
Mbp

s

TX 48
Mbp

s

TX 54
Mbp

s

D
at

a
ra

te
 (M

bi
ts

/s
ec

) wplc
kzc

Geoffrey Mainland—Drexel University

RX Performance

�22

0

50

100

150

RX 6M
bp

s

RX 9M
bp

s

RX 12
Mbp

s

RX 18
Mbp

s

RX 24
Mbp

s

RX 36
Mbp

s

RX 48
Mbp

s

RX 54
Mbp

s

D
at

a
ra

te
 (M

sa
m

pl
es

/s
ec

)

wplc
kzc

Geoffrey Mainland—Drexel University

Where’s the Magic?
1. The language

•First-order (essentially).
•take and emit are built-in to the language. 

Statically-known read/write sizes.
•No zip or unzip. In contrast to, e.g., Lustre.

2. The application
•No data dependencies once we know the data rate.
•Constant loop bounds.

�23

Geoffrey Mainland—Drexel University

Continuing Challenges
•Provide better abstractions for signal processing

operations (HSpiral, with Jeremy Johnson).
•Automate conversion of floating-point code to fixed-

point code while maintaining “correctness” (Xiao
Han).

•Compile to FPGAs (Mahshid Shahmohammadian).

�24

Geoffrey Mainland—Drexel University

Compiling to Hardware: Challenges

�25

* atan … := conj(…*x, …*y)

•“Atomic” operations now have (space) costs we have to take
into consideration.

•Compound operations now have (time) costs we have to take
into consideration.

•Longest-latency operation now gates operating frequency.

Geoffrey Mainland—Drexel University

Compiling to Hardware: Hope
•Simple consumer/producer model matches hardware model

pretty well.

•ANF (already used in IR) leads to simple “instruction”-level
“fission.”

•But when to fuse? For example, we still want to convert scramble
to a LUT.

�26

