Semantics, Validation and Verification of DSLs:
An Experience Report

Jozef Hooman, ESI by TNO and RU Nijmegen
Sarmen Keshishzadeh, TU Eindhoven,
Mohammad Mousavi, Halmstad University,
Arjan Mooij, ESI by TNO

A public- private

e X K X RX [:[IMMIU research community

oy,
5
i
o)
“
::‘a Ij T
Sy ¥
% = J
""‘ e
Eﬁ
e
ud
Fiv] :
© %
K]
e

Hour Lo pigesnhole me

+ 2001-2005: Ph.D., CS, TU Eindhoven with Jan Friso Groote and
Gordon Plotkin (Title: Structuring SOS)

- 2006-2007: Postdoc with Luca Aceto
(on unaxiomatizability theorems for process algebras)

- 2001-2013: ELE and CS, TU Eindhoven
(semantics, process algebra, model checking, testing)

» 2013- : CERES, Halmstad University
(model-based testing)

- 2014- Secretary of IFIP WG 1.8

Our Domaine Specifics

- Interventional X-ray scanners

- Several moving objects (tables, arms, detectors) and restrictions
(e.g., on distances and velocities)

- Layered architecture: safety layer to prevent collisions
- Reacting to users' requests

- DSL for early validation, verification and code generation

(User Interface |
1
Speed
Detector Request
k4

Table | Safety Layer |

& 1
Geometric Speed
Models Value Request

cAm [Sensors | [Motors |

- Given a geometric model value (from sensors) and an input
speed request (from user), calculate the set of active

restrictions, and the output speed request

- Determining active restrictions
depending on geometry and previous state

- Computing output speed requests
based on input speed requests and most restrictive limits

- Integrating the semantics in a symbolic transition system

- Model validation:
- against domain-specific properties
- coding the semantics and the properties
in SMT input lang.
» using Z3 to check for properties

- Implementation verification:
- defining a notion of conformance
- generating test-cases from models to check for
conformance

Future readmap

- Modularity in the semantics of the
DSL

- Exploiting gray-box information for
more effective testing

- Giving more specific feedback and
automated debugging suggestions

Semantics, Validation and Verification of DSLs:
An Experience Report

Jozef Hooman, ESI by TNO and RU Nijmegen
Sarmen Keshishzadeh, TU Eindhoven,
Mohammad Mousavi, Halmstad University,
Arjan Mooij, ESI by TNO

A public- private

e X K X RX [:[IMMIU research community

oy,
5
i
o)
“
::‘a Ij T
Sy ¥
% = J
""‘ e
Eﬁ
e
ud
Fiv] :
© %
K]
e

— Hour te pigesnhole me

« 2001-2005: Ph.D., CS, TU Eindhoven with Jan Friso Groote and
Gordon Plotkin (Title: Structuring SOS)

- 2006-2007: Postdoc with Luca Aceto
(on unaxiomatizability theorems for process algebras)

« 2001-2013: ELE and CS, TU Eindhoven
(semantics, process algebra, model checking, testing)

« 2013- : CERES, Halmstad University
(model-based testing)

- 2014- Secretary of IFIP WG 1.8
I

Structural Operatisnal Semantics

- Semantical meta-theorems through syntactic conditions on SOS rules

- A yardstick for language designers
(used for substantial languages such as CIF)

» Developed theory and tools for:
- Compositionality (congruence) (overview: [TCS'07])
- Algebraic properties (overview: [BEATCS'09])
- Generating prototype implementations
(animators, model-checkers) [SOS'05]
- Axiomatizations and equivalence checkers [SOS13]

« Modular semantics [CONCUR'13] and
isimulation for open systems [EXPRESS'10]

Medel Checking

- Verifying epistmic properties of behavioral specifications
[LPAR'O7,TbiLLC"13]

- Exploiting symmetrical structures for verifying actor-based
systems [Acta'10]

- Verifying sensor network protocols by identifying anti-patterns
and avoiding them [iIFM"12]

Medel-Based [esting

- Applying conformance testing to industrial systems from:
- healthcare [MoTIP'12,SEFM'13] and
- financial [FSEN'07] domains.

- Extending conformance theories to cater for:
- Asynchrony [SEFM'11, SoSym'14], and
- Decompositional testing [MBT'13]

- Analyzing and reducing complexity of conformance checking
[FACS'13]

Medel-Based [esting (engoing research)

- Applying conformance testing to software product lines (SPLs):
- extending testing models and theories to SPLs [MBT'14] and
- factoring out test-cases for common features [SAC-SVT14]

- Model-based consequence analysis:

- Analyzing the possible effects of non-conforming components
in the overall system behavior, and

- Diagnosing the system-level failures in terms of component
faults

Our Domaine Specifics

- Interventional X-ray scanners

- Several moving objects (tables, arms, detectors) and restrictions
(e.g., on distances and velocities)

- Layered architecture: safety layer to prevent collisions
- Reacting to users' requests

- DSL for early validation, verification and code generation

(User Interface |
1
Speed
Detector Request
k4

Table | Safety Layer |

& 1
Geometric Speed
Models Value Request

cAm [Sensors | [Motors |

Syntax by Example

// --- Context Declarations -------
object Table

object CArm

object Detector

model Actuals predefined
model LookAhead userdependent
// --- Restrictions -------
restriction ApproachingTableAndCArm
activation
Distance[Actuals](Table, CArm) < 35 mm + 15 cm
effect

absolute limit CArm[Rotation]
at ((Distance[Actuals](Table, CArm) - 35 mm) / 15 cm) * 10 dgps

restriction ApproachingTableAndDetector
activation
Distance[LookAhead](Table, Detector) < 35 mm + 15 cm
&& Distance[LookAhead](Table, Detector) <
Distance[Actuals](Table, Detector)
effect
relative limit Detector[Translation]
at ((Distance[lLookAhead](Table, Detector) - 35 mm) / 15 cm)

Gesmetric Medel Values

GeoVal ::= Mod — Dist

where Dist is the set of distance functions:

d: Objx Obj — Ry such that

— d(01,01) — 0;
— d(ol, 02) _ d(Oz, 01).

Speed Requests
MovType == { Rotation, Translation}

SpReg == Obj x MovType — R®

Restrictions

R: Triples (act, deact, eff) such that

- act, deact € Cond
- eff € P(Eff)
where

 Cond == GeoVal — Bool , and

- Eff is the set of triples (It, om, e) such that
. It €{Abs, Rel}
. om € P(Obj x MovType)
. €€ Expr

DSL Instance

A triple (Obj, Mod, R), where
- Obj is a given set of objects,
- Mod is a given set of geometric models, and

- Ris a set of restrictions on Obj and Mod

- Given a geometric model value (from sensors) and an input
speed request (from user), calculate the set of active

restrictions, and the output speed request

- Determining active restrictions
depending on geometry and previous state

- Computing output speed requests
based on input speed requests and most restrictive limits

- Integrating the semantics in a symbolic transition system

Active restruction

For a restriction r,
a geometric model value g and a current activation state b:

CurrAct, (b, g) = act,(g) V (b A ~deact,(g))

—actr(g) actr(g) V —deactr(g)

actr(g)

—actr(g) A deacty

Determining active restuction set
ASTS(R) = (Q, g, T), where
« Q: R = Bool,
- q(r) =false, for each rin R,
« T CQx CondxQ where

- Cond: functions from geo. val. to Boolean expr., and
- cond(g): conjunction of restrictions active w.r.t. g

Calewlating the effect

For a restriction r, and a geometric model value g
the effect of r, for each object o:
the most restrictive absolute and relative limits

For a set of restictions R and a geometric model value g
the effect of R, for each object o:
the most restrictive absolute and relative limits
for each and every active r in R, if any,
or the set of real numbers, otherwise.

Ouwbput Request

Given the minimal (absoute and relative) limits,
the output request is the speed vector respecting the limits.

- Model validation:
- against domain-specific properties
- coding the semantics and the properties
in SMT input lang.
» using Z3 to check for properties

- Implementation verification:
- defining a notion of conformance
- generating test-cases from models to check for
conformance

vz.gf.

- Basic validation:

- Syntax checking

- Type checking

- Reference chasing

- Advanced validation:
- Range checking: relative limits in [0,1], non-negative distances
- Safety
- collision avoidance,
- monotonicity: the closer the objects, the more restrictive the
limits
- Deadlock freedom: some user input takes us out of standstill

[

1

- Pivotal restriction(s): the minimal set of restrictions violating the
property

- Delta-debugging:

- Take two sets of passing (R+) and failing (R-) restrictions,
such that R- is smaller than of R+,

- Pick some R in between R- and R+,

- Validate R (using an SMT solver)

- If R fails, let R- be R,
if R passes, let R+ be R,
repeat until R+ and R- differ in one restriction

Challenges

- Growing set of geometric functions used by the domain experts
- Masked restrictions

- Technical challenges in translation and SMT solving (non-linear
constraints, quantification)

Masted restrictions

Relative Limit Relative Limit
3.0¢ 3.0¢

25—}~ 2.5}
2.0¢ H@\ 2.0}
1.5¢ .,

— 1.5¢ o~

o - o~ e -
o @ - o T~

0.5}F . 0.5F" .

. ; * - ; “~ Distance (d) * - ; * * “ Distance (d)
00 05 10 15 20 25 30 00 05 10 15 20 25 3.0

(a) Effects of restrictions (b) Unmasked parts of restrictions

Resulls

- On an actual model:
« 16 parameters,
« 81 restrictions,
- 264 properties (5 patterns)
. 226 violations detected,
. traced back to a handful restrictions
. Took 2 minutes

restriction ApproachingTableAndCArm
activation
Distance[Actuals](Table, CArm) < 35 mm + 15 cm
effect
absolute limit CArm[Rotation]
at ((Distance[Actuals](Table, CArm) - 35 mm) / 15 cm) * 10 dgps
Multiple markers at this line -

- Potential (Rotation) deadlock for CArm
- Absolute limit for CArm rotation should be non-negative -

aces and wune

Run: qol(g1,uri,ory)...(Gn,urn,or,)q, such that

(o =q)AVie {1,...,n} . (or; = [outputr] (4, (9i, ur:)) A
(3cond € Cond.(g;—1,cond, g;) € T A cond(g;))

Trace: any finite prefix of a run

Conformance

Testing assumption: implementation behaves as an unknown ASTS

Goal: to establish whether the implementation is
(trace) equivalent to the DSL instance

Means: generate covering test-cases (concrete executions)
from the DSL

Coverage

The two notions of coverage:

- For each reachable symbolic state, an execution hits the state
(generic, similar to node coverage)

« For each reachable state, and each reachable limit,
an execution checks for its enforcement
(domain-specific)

Future readmap

- Modularity in the semantics of the
DSL

- Exploiting gray-box information for
more effective testing

- Giving more specific feedback and
automated debugging suggestions

Key references

- A.J. Mooij, J. Hooman, R. Albers: Early Fault Detection
Using Design Models for Collision Prevention in Medical
Equipment. FHIES 2013.

- S. Keshishzadeh, A.J. Mooij, MRM: Early Fault Detection
in DSLs Using SMT Solving and Automated Debugging.
SEFM 2015.

