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Why would we want to do that?
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The latency of product development
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e ChromeQS based on Linux v2.6.32.
e New devices appear all the time.
— Eg, Atheros IEEE 802.11n wireless chipset.

e Ath9k driver developed for Linux v2.6.38, not Linux v2.6.32
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Make an ath9k driver for Linux v2.6.327
e Lots of work, error-prone.
e Atheros may not be motivated.

e ChromeOS may modernize to eg Linux v2.6.36.

Modernize ChromeQOS to Linux v2.6.387
e Not in the short term.

e May prefer using a stable kernel.

Ensure Linux v2.6.38 drivers run out of the box on Linux v2.6.327
e Hinders advancement.

e Not in the Linux philosophy.
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Backporting

Goal:

e Slightly modify modern drivers for compatability with older
versions.

Issues:
e Where to start?
e How to express modifications?

o Scalability.

— 10,000 or so Linux drivers.
— Code arrives/modified every day.



Where to start?

oS

driver

Product

Device manufacturer targets an OS version relevant to
potential customers.

OS always moves ahead
— New Linux release every 2.5-3 months.

Products may modernize as well.

A driver targeting any specific release is always left behind.
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Our problem:
e A driver is too modern for existing clients,

e And too old fashioned for future clients.

Upstream-first development:

e Driver integrated with HEAD of Linus's git tree.
e Advantages

— Driver developed once, modernized by kernel maintainers.
— Solves our second problem.

e Inconveniences

— Coding style constraints.
— What about backporting?

To make upstream-first development attractive, we need an
“industrial-strength” solution to backporting.



How to express modifications?

Typical strategy: #ifdefs by kernel versions.

An artificial example:

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))

A _new();

#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25))
A_older();

#else

A_very_old();

#endif



A real example

Linux v2.6.28 code: drivers/net/usb/usbnet.c

net->change_mtu = usbnet_change_mtu;
net->get_stats = usbnet_get_stats;
net->hard_start_xmit = usbnet_start_xmit;
net->open = usbnet_open;

net->stop = usbnet_stop;
net->watchdog_timeo = TX_TIMEOUT_JIFFIES;
net->tx_timeout = usbnet_tx_timeout;

Current code: (12.12.2014)

net->netdev_ops = &usbnet_netdev_ops;
net->watchdog_timeo = TX_TIMEOUT_JIFFIES;



Issues

Given net->netdev_ops = &usbnet_netdev_ops;, must:

e Find the definition of usbnet _netdev_ops:

static const struct net_device_ops usbnet_netdev_ops = {

.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_set_rx_mode = usbnet_set_rx_mode,
.ndo_change_mtu = usbnet_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,

};

e Find the names of the corresponding fields.
— Some perhaps didn’t exist.

e Remove the definition of usbnet _netdev_ops.

e Construct the new code.



Result, part 1

--- a/drivers/net/usb/usbnet.c
+++ b/drivers/net/usb/usbnet.c
@@ -1151,6 +1151,7 @@
}
EXPORT_SYMBOL_GPL (usbnet_disconnect);

+#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))
static const struct net_device_ops usbnet_netdev_ops =
.ndo_open = usbnet_open,

.ndo_stop = usbnet_stop,
@@ -1160,6 +1161,7 @@
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
+#endif

{



Result, part 2

@@ -1229,7 +1231,15 @@
net->features |= NETIF_F_HIGHDMA;
#endif

+#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29))

net->netdev_ops = &usbnet_netdev_ops;
+#else
+ mnet->change_mtu = usbnet_change_mtu;
+ mnet->hard_start_xmit = usbnet_start_xmit;
+ mnet->open = usbnet_open;
+ net->stop = usbnet_stop;
+ mnet->tx_timeout = usbnet_tx_timeout;
+#endif

net->watchdog_timeo = TX_TIMEOUT_JIFFIES;
net->ethtool_ops = &usbnet_ethtool_ops;



Assessment

Added: 5 lines of C code, 5 lines of #ifdefs.

Changes maintained as patches
— Allows changes upstream.

61 netdev_ops fields possible.

All field names change.

ndo_set_mac_address and ndo_validate_addr removed.

— Have default values.

Bug? What happened to ndo_set_rx_mode?

484 netdev_ops initializations in 434 files.
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Backports via a compatability library

Observations:
e The code to modify is copious but repetitive.

— Remove a structure, because its type is not available.
— Copy structure field values.

These changes can be encapsulated in a library:
e Define the missing type.

e Define a function to perform the structure copy.

Proposition of the Linux backports project

e Initiated in 2007 by Luis R. Rodriguez, to backport 802.11
wireless drivers.



Compat library-based approach

--- a/drivers/net/usb/usbnet.c
+++ b/drivers/net/usb/usbnet.c
@@ -1446,7 +1446,7 Q@@ usbnet_probe (struct usb_interface *udev

net->features |= NETIF_F_HIGHDMA;
#endif
- net->netdev_ops = &usbnet_netdev_ops;

+ mnetdev_attach_ops(net, &usbnet_netdev_ops);
net->watchdog_timeo = TX_TIMEOUT_JIFFIES;
net->ethtool_ops = &usbnet_ethtool_ops;

--- a/drivers/net/wireless/ath/ath6kl/main.c
+++ b/drivers/net/wireless/ath/ath6kl/main.c
@@ -1289,7 +1289,7 @@ static const struct net_device_ops ath6k

void init_netdev(struct net_device *dev)

{

- dev->netdev_ops = &ath6kl_netdev_ops;

+ mnetdev_attach_ops(dev, &ath6kl_netdev_ops);
dev->destructor = free_netdev;
dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;

Backports two drivers, in one line each.



Scalability

Current status of the backports project:

800 ethernet, wireless, bluetooth, NFC, ieee802154, media,
and regulator drivers.

Backported from their linux-next, release candidate, and
recent stable versions.

18 earlier releases as backport targets.
linux-next and linux-stable evolve every day.

Changes maintained as patches, which become out of date.

2-6 iterations of tests, refinements, compiles for all supported
versions.

— Patches are fragile.

Goal: Automate the transformation part.



Coccinelle to the rescue

Our transformations have a lot in common:

- mnet->netdev_ops = &usbnet_netdev_ops;
+ mnetdev_attach_ops(net, &usbnet_netdev_ops);

- dev->netdev_ops = &ath6kl_netdev_ops;
+ mnetdev_attach_ops(dev, &ath6kl_netdev_ops);

Similar, but one per file.

Coccinelle:
e Semantic patches, generalizing over unimportant details.

e Used for over 2000 Linux kernel patches.



Backporting netdev_ops with Coccinelle

- net->netdev_ops = &usbnet_netdev_ops;
+ netdev_attach_ops(net, &usbnet_netdev_ops);



Backporting netdev_ops with Coccinelle

- dev->netdev_ops = &ops;
+ netdev_attach_ops(dev, &ops);
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Backporting netdev_ops with Coccinelle

Q@

struct net_device xdev;

struct net_device_ops ops;

(¢

- dev->netdev_ops = &ops;

+ netdev_attach_ops(dev, &ops);

6 lines to backport this change for all drivers.
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Performance

Patch
o Applies to a specific file and line number.

e No parsing required.

Coccinelle
e Parses semantic patch and C code,
e Searches for positions where the semantic patch matches,

e Performs the tranformation.

Coccinelle optimizations
e Parallelism, by file.
o Keyword indexing.

e Can be faster than sequential patch application.



A more complex example

Threaded IRQs introduced in Linux v2.6.31.
e Adds an extra handler to normal request_irq call.
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A more complex example

Threaded IRQs introduced in Linux v2.6.31.
e Adds an extra handler to normal request_irq call.

e Need somewhere to store this handler.

Solution
e Use device's private structure.

e Need to find structure type name, extend structure definition.



Extending the private structure using Coccinelle

@ threaded_irq @

identifier ret; type T; T *private;

expression irq, irq_handler, irq_thread_handler, flags, name;

(]

+#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,31)

ret = request_threaded_irq(irq, irq_handler,
irq_thread_handler, flags, name, private);

+#else

+ret = compat_request_threaded_irq(&private->irq_compat,
+ irq, irq_handler, irq_thread_handler,

+ flags, name, private);

+#endif

@ modify_private_header depends on threaded_irq @
type threaded_irq.T;

@@

T {

+#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,31)
+ struct compat_threaded_irq irq_compat;
+#endif

};

Update some IRQ oprations accordingly.
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Currently 5 semantic patches, representing 471 lines of code.

Future work:
e Make Linux code more backport friendly.
e Infer semantic patches, or even compat library code.
e Address correctness issues - currently, only compilation.

“All the patches that broke often in the early days are now using
coccinelle or are removed because they were only needed for the
older kernel versions.” [Hauke Mehrtens, 10.23.2014]



