Coccinelle: 10 Years of Automated Evolution in the Linux
Kernel

Julia Lawall (Inria/LIP6)
June, 2018

Goal: Automating bug finding and evolutions for Linux kernel developers.

- Development began in 2006.

- Goal to automate porting of Linux 2.4 drivers to Linux 2.6.

Requirements:

- Accessible to Linux developers.

- Reasoning about code as it appears to the developer.
- Treat a large subset of C.

- Ensure continuing maintainability.

Usage in the Linux kernel

—e— Coccinelle developers —a— Qutreachy interns

—e— Dedicated user —— 0-day
—+— Kernel maintainers Others
[
400 |- |
2
S
€
S 200 - |
=
o
*
0 L ! ! | ! ! ! !

| | |
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

How did we get here?

Coccinelle design: expressivity

Semantic patches: Patches with some abstraction.

- Remain close to the C level.

- A few extensions to control the level of abstraction.

aa

expression x,E1,E2;
aa

- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);

- memset(x, 0, E1);

Coccinelle design: expressivity

Semantic patches: Patches with some abstraction.

- Remain close to the C level.

- A few extensions to control the level of abstraction.

Qa

expression x,E1,E2,E3;
identifier f;

Q)

- x = kmalloc(E1,E2);
kzalloc(E1,E2);

when != (<+...X...+>) = E3
when '= f(...,%x,...)

- memset(x, 0, E1);

+
n

Coccinelle design: performance

Goal: Be usable on a typical developer laptop.
Target code base: 5SMLOC in Feb 2007, 16.5MLOC in Jan 2018.

Choices:

- Intraprocedural, one file at a time.

- Process only . c files, by default.

- Include only local or same-named headers, by default.
- Use heuristics to parse macro uses.

- Provide best-effort type inference, but no other program analysis.

Coccinelle design: correctness guarantees

Ensure that outermost terms are replaced by like outermost terms

aa

expression x,E1,E2,E3;
identifier f;

aa

- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);

- memset(x, 0, E1);

No other correctness guarantees:

- Bug fixes and evolutions may not be semantics preserving.

- Improves efficiency and expressiveness.

- Rely on developer’s knowledge of the code base and ease of creating and
refining semantic patches. 8

Coccinelle design: dissemination strategy

Show by example:

- June 1, 2007: Fix parse errors in kernel code.

- July 7, 2007: Irqg function evolution
- Updates in 5 files, in net, atm, and usb

- July 6, 2007: kmalloc + memset — kzalloc

- Updates to 166 calls in 146 files.
- A kernel developer responded “Cool!”.
- Violated patch-review policy of Linux.

- July 2008: Use by a non-Coccinelle developer.

- October 2008: Open-source release.

Initial assessment

- Useful: By the Coccinelle developers to contribute to the Linux kernel.

- Usable: By outside developers to contribute to the Linux kernel.

10

Initial assessment

- Useful: By the Coccinelle developers to contribute to the Linux kernel.
- Usable: By outside developers to contribute to the Linux kernel.

- But some new needs emerged over time...

10

Expressivity evolutions

Original hypothesis: Linux kernel developers will find it easy and convenient to
describe needed code changes in terms of fragments of removed and added code.

n

Expressivity evolutions

Original hypothesis: Linux kernel developers will find it easy and convenient to
describe needed code changes in terms of fragments of removed and added code.

Confrontation with the real world:

- Many language evolutions: C features, metavariable types, etc.
- Position variables.

- Record and match position of a token.
- Scripting language rules.

- Original goal: bug finding, eg buffer overflows.
- Used in practice for error reporting, counting, etc.

n

Position variables and scripts

Qra

expression object;

position p

Q)

(

drm_connector_referencedp(object)

|
drm_connector_unreferencedp(object)

)

@script:pythona
object << r.object;
p << r.p;

Q)

msg="WARNING: use get/put helpers to reference and dereference %s" % (object)
coccilib.report.print_report(p[0], msg)

12

Performance evolutions

Original hypothesis: Limiting analysis scope via intraprocedural analysis, ignoring
headers was good enough.

13

Performance evolutions

Original hypothesis: Limiting analysis scope via intraprocedural analysis, ignoring
headers was good enough.

Confrontation with the real world:

- 1,5, 0or 15 MLOC is a lot of code.
- Parsing is slow, because of backtracking heuristics.

13

Performance evolutions

Original hypothesis: Limiting analysis scope via intraprocedural analysis, ignoring
headers was good enough.

Confrontation with the real world:

- 1,5, 0or 15 MLOC is a lot of code.

- Parsing is slow, because of backtracking heuristics.
Evolutions:

- Indexing, via glimpse, id-utils.

- Parallelism, via parmap.

13

Correctness guarantee evolutions

Original hypothesis: Developer control over rules is good enough.

Correctness guarantee evolutions

Original hypothesis: Developer control over rules is good enough.

Confrontation with the real world: Mostly, developer control over rules is good
enough.

Dissemination strategy evolutions

Original hypothesis: Show by example rather than attempting to impose.

15

Dissemination strategy evolutions

Original hypothesis: Show by example rather than attempting to impose.

Confrontation with the real world:

- Showing by example generated initial interest.

- Organized four workshops: industry participants.

- Presentations at developer conferences: FOSDEM, Linux Plumbers, etc.
- LWN articles by kernel developers.

15

Status: Performance

J
o RRRRRARRARAARARRRRARRARRRRARP}
o 4000 He2 cores (4 threads) =
I
= 2,000 o
o o0
Q ".“.......-u'
[%2] o'
% (e iddddadisdasdsdinsdndaniad R d AR AN AN NR NN NN NN
IS .
semantic patches
3 TTTTTTTTTTTTTT SR Toaa T TaTTae T3 T
E 40,000 {-ﬁles considered |
o
o 20,000 . e
= O [terovapvonpontorettetortott 0 T

semantic patches

Based on the 59 semantic patches in the Linux kernel.

Status: Use of new features

- 3325 commits contain semantic patches.
- 18% use position variables.
- 5% use scripts.

- 43% of the semantic patches using position variables or scripts are from
outside the Coccinelle team.

- All 59 semantic patches in the Linux kernel use both.

’+Removed lines —m— Added lines ‘

I | HIA
L | sj001

-| punos
- Anoas
- sajdwes
BRE

= - wuw

= - an

I BREIIEN
- odi

- Hul

- apnyoul
L sy

L - si1aALIp
- -1 01dAID
- 2019

- youe

| | |

15} ™ —
o o o
— — —

(9125 §07) 8p02 JO SaUI)

18

Impact: Maintainer use

300 | —e— Cleanups 7
—m— Bug fixes

o 200 |
Q0
€
>

€ 100 |- =

oL \ . ! ! ! ! ! . i

| |
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

45% of maintainers who have at least one commit touching at least 100 files have
at some point used Coccinelle.

Impact: Maintainer use examples

TTY. Remove an unused function argument.

- 11 affected files.

DRM. Eliminate a redundant field in a data structure.

- 54 affected files.

Interrupts. Prepare to remove the irq argument from interrupt handlers, and then
remove that argument.

- 188 affected files.

20

Impact: Intel's 0-day build-testing service

59 semantic patches in the Linux kernel with a dedicated make target.

O apilfree Hiterators Miocks Mnull Mtests Mmisc

O 400 T T T T T =

e

=

S 200 5 |

=

=

E oL - E\ \ \ \ N
2013 2014 2015 2016 2017

>

=

o

g 200 -

S

2]

é 100 - ! N

= 0 - - ! ; |

= \ \ \ \ \

i 2013 2014 2015 2016 2017

21

Coccinelle community

25 contributors

- Most at Inria, due to use of OCaml and PL concepts.

- Active mailing list.

Availability

- Packaged for many Linux distros.

Use outside Linux

- RIOT, systemd, gemu, etc.

22

Conclusion: Lessons learned

- Visibility is necessary.

- Tool should be easy to access and install.

- Tool should be easy to use and robust.

- Interleaving pattern matching and scripts is very powerful.

- Avoid creeping featurism: Do one thing and do it well.

http://coccinelle.lip6.fr

23

