
Coccinelle: 10 Years of Automated Evolution in the Linux
Kernel

Julia Lawall (Inria/LIP6)
June, 2018

1

Coccinelle

Goal: Automating bug finding and evolutions for Linux kernel developers.

• Development began in 2006.
• Goal to automate porting of Linux 2.4 drivers to Linux 2.6.

Requirements:

• Accessible to Linux developers.
• Reasoning about code as it appears to the developer.
• Treat a large subset of C.
• Ensure continuing maintainability.

2

Usage in the Linux kernel

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

200

400

#
of
co
m
m
its

Coccinelle developers Outreachy interns
Dedicated user 0-day

Kernel maintainers Others

3

How did we get here?

4

Coccinelle design: expressivity

Semantic patches: Patches with some abstraction.

• Remain close to the C level.
• A few extensions to control the level of abstraction.

@@
expression x,E1,E2;
@@
- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
...

- memset(x, 0, E1);

5

Coccinelle design: expressivity

Semantic patches: Patches with some abstraction.

• Remain close to the C level.
• A few extensions to control the level of abstraction.

@@
expression x,E1,E2,E3;
identifier f;
@@

- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
... when != (<+...x...+>) = E3

when != f(...,x,...)
- memset(x, 0, E1);

6

Coccinelle design: performance

Goal: Be usable on a typical developer laptop.

Target code base: 5MLOC in Feb 2007, 16.5MLOC in Jan 2018.

Choices:

• Intraprocedural, one file at a time.
• Process only .c files, by default.
• Include only local or same-named headers, by default.
• Use heuristics to parse macro uses.
• Provide best-effort type inference, but no other program analysis.

7

Coccinelle design: correctness guarantees

Ensure that outermost terms are replaced by like outermost terms
@@
expression x,E1,E2,E3;
identifier f;
@@
- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
...

- memset(x, 0, E1);

No other correctness guarantees:

• Bug fixes and evolutions may not be semantics preserving.
• Improves efficiency and expressiveness.
• Rely on developer’s knowledge of the code base and ease of creating and
refining semantic patches. 8

Coccinelle design: dissemination strategy

Show by example:

• June 1, 2007: Fix parse errors in kernel code.

• July 7, 2007: Irq function evolution
– Updates in 5 files, in net, atm, and usb

• July 6, 2007: kmalloc + memset −→ kzalloc
– Updates to 166 calls in 146 files.
– A kernel developer responded “Cool!”.
– Violated patch-review policy of Linux.

• July 2008: Use by a non-Coccinelle developer.

• October 2008: Open-source release.

9

Initial assessment

• Useful: By the Coccinelle developers to contribute to the Linux kernel.

• Usable: By outside developers to contribute to the Linux kernel.

• But some new needs emerged over time...

10

Initial assessment

• Useful: By the Coccinelle developers to contribute to the Linux kernel.

• Usable: By outside developers to contribute to the Linux kernel.

• But some new needs emerged over time...

10

Expressivity evolutions

Original hypothesis: Linux kernel developers will find it easy and convenient to
describe needed code changes in terms of fragments of removed and added code.

Confrontation with the real world:

• Many language evolutions: C features, metavariable types, etc.
• Position variables.

– Record and match position of a token.

• Scripting language rules.
– Original goal: bug finding, eg buffer overflows.
– Used in practice for error reporting, counting, etc.

11

Expressivity evolutions

Original hypothesis: Linux kernel developers will find it easy and convenient to
describe needed code changes in terms of fragments of removed and added code.

Confrontation with the real world:

• Many language evolutions: C features, metavariable types, etc.
• Position variables.

– Record and match position of a token.

• Scripting language rules.
– Original goal: bug finding, eg buffer overflows.
– Used in practice for error reporting, counting, etc.

11

Position variables and scripts

@ r @
expression object;
position p
@@
(
drm_connector_reference@p(object)
|
drm_connector_unreference@p(object)
)

@script:python@
object << r.object;
p << r.p;
@@

msg="WARNING: use get/put helpers to reference and dereference %s" % (object)
coccilib.report.print_report(p[0], msg)

12

Performance evolutions

Original hypothesis: Limiting analysis scope via intraprocedural analysis, ignoring
headers was good enough.

Confrontation with the real world:

• 1, 5, or 15 MLOC is a lot of code.
• Parsing is slow, because of backtracking heuristics.

Evolutions:

• Indexing, via glimpse, id-utils.
• Parallelism, via parmap.

13

Performance evolutions

Original hypothesis: Limiting analysis scope via intraprocedural analysis, ignoring
headers was good enough.

Confrontation with the real world:

• 1, 5, or 15 MLOC is a lot of code.
• Parsing is slow, because of backtracking heuristics.

Evolutions:

• Indexing, via glimpse, id-utils.
• Parallelism, via parmap.

13

Performance evolutions

Original hypothesis: Limiting analysis scope via intraprocedural analysis, ignoring
headers was good enough.

Confrontation with the real world:

• 1, 5, or 15 MLOC is a lot of code.
• Parsing is slow, because of backtracking heuristics.

Evolutions:

• Indexing, via glimpse, id-utils.
• Parallelism, via parmap.

13

Correctness guarantee evolutions

Original hypothesis: Developer control over rules is good enough.

Confrontation with the real world: Mostly, developer control over rules is good
enough.

14

Correctness guarantee evolutions

Original hypothesis: Developer control over rules is good enough.

Confrontation with the real world: Mostly, developer control over rules is good
enough.

14

Dissemination strategy evolutions

Original hypothesis: Show by example rather than attempting to impose.

Confrontation with the real world:

• Showing by example generated initial interest.
• Organized four workshops: industry participants.
• Presentations at developer conferences: FOSDEM, Linux Plumbers, etc.
• LWN articles by kernel developers.

15

Dissemination strategy evolutions

Original hypothesis: Show by example rather than attempting to impose.

Confrontation with the real world:

• Showing by example generated initial interest.
• Organized four workshops: industry participants.
• Presentations at developer conferences: FOSDEM, Linux Plumbers, etc.
• LWN articles by kernel developers.

15

Status: Performance

0

2,000

4,000

semantic patchesel
ap
se
d
tim

e
(s
ec
.)

2 cores (4 threads)

0

20,000

40,000

semantic patches

nu
m
be
ro
ffi
le
s

files considered

Based on the 59 semantic patches in the Linux kernel.

16

Status: Use of new features

• 3325 commits contain semantic patches.

• 18% use position variables.

• 5% use scripts.

• 43% of the semantic patches using position variables or scripts are from
outside the Coccinelle team.

• All 59 semantic patches in the Linux kernel use both.

17

Impact: Changed lines

ar
ch

bl
oc
k

cr
yp
to

dr
iv
er
s fs

in
cl
ud
e

in
it

ip
c

ke
rn
el lib m
m ne
t

sa
m
pl
es

se
cu
rit
y

so
un
d

to
ol
s

vi
rt

101

103

105
lin
es
of
co
de

(lo
g
sc
al
e)

Removed lines Added lines

18

Impact: Maintainer use

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

100

200

300
nu
m
be
r

Cleanups
Bug fixes

45% of maintainers who have at least one commit touching at least 100 files have
at some point used Coccinelle.

19

Impact: Maintainer use examples

TTY. Remove an unused function argument.

• 11 affected files.

DRM. Eliminate a redundant field in a data structure.

• 54 affected files.

Interrupts. Prepare to remove the irq argument from interrupt handlers, and then
remove that argument.

• 188 affected files.

20

Impact: Intel’s 0-day build-testing service

59 semantic patches in the Linux kernel with a dedicated make target.

2013 2014 2015 2016 2017
0

200

400

#
wi
th
pa
tc
he
s

api free iterators locks null tests misc

2013 2014 2015 2016 2017
0

100

200

#
wi
th
m
es
sa
ge
on
ly

21

Coccinelle community

25 contributors

• Most at Inria, due to use of OCaml and PL concepts.
• Active mailing list.

Availability

• Packaged for many Linux distros.

Use outside Linux

• RIOT, systemd, qemu, etc.

22

Conclusion: Lessons learned

• Visibility is necessary.

• Tool should be easy to access and install.

• Tool should be easy to use and robust.

• Interleaving pattern matching and scripts is very powerful.

• Avoid creeping featurism: Do one thing and do it well.

http://coccinelle.lip6.fr

23

