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Introduction and Motivation

Obtaining accurate space and time information about computer
programs is important in a number of areas. e.g. Embedded systems.

However, there is a trade-off between effective program analyses and

high level abstraction mechanisms.

We aim to implement a (multi-stage) functional language which avoids

this trade-off, with:
e Strong compile-time guarantees about resource boundedness.

e Useful abstraction mechanisms e.g. higher order functions,
recursive data structures, recursive functions.

We are developing a framework based on dependent types.



Why Dependent Types?
Characteristic feature of a dependent type system:
e Types may be predicated on Values.
This allows us to:
e Express size bounds in a function’s type.

e Verify correctness of externally specified size constraints (either
user specified, or from an external inference system).

e Express arbitrarily complex constraints.
e Expose proof obligations to the user.

The source language need not be dependently typed; we use a
dependently typed core language to explain source language programs.



Resource Framework

Basic idea 1: We predicate each user defined type on a N.

e.g. A source language List type ...
data List a = nil | cons a (List a)

... becomes a dependent “List with size” type:

A:N—=x n : N
data Lists 4 : N — %

where

nils : Listg A0

x : Aan xs : Listg A xzsn
conss = zs : Listg A (s xsn)

The framework is independent of the meaning we attach to size. We
could choose, e.g., length (as here), required heap cells, total size of
list and all elements . ..



Resource Framework

Basic idea 2: We pair all values with a proof of a predicate.

X i N—%x P :Vn:N. X n—x%
data Size X P : %

val : Xn p : Pnoal
size val p : Size X P

where

Each function now returns a Size, rather than a simple value. e.g. a
sized list, carrying a proof of a length property:

size (conss z xs) (refl (s xsn))

. Size (List A) (An:N. Av:(List A) n.n =szsn)

refl constructs a reflexive proof of equality.



Example — Sized append

Consider, e.g., the append function, defined in our source language as:

append : List a -> List a -> List a
append nil ys = ys

append (cons x xs) ys = cons x (append xs ys)

What size properties does this definition satisfy?

How do we translate it into our framework?



Example — Sized append

Translated into our framework, append returns values paired with a
proof object; we use a high level notation similar to EPIGRAM:

lot xs . Lists A xsn ys : Listg A ysn
— append s ys : SizeLists A (An:N. Av:Lists A n.n = xsn + ysn)

append nilg ys + size ys Oy
append (conss = zs) ys +— let (size val p) = append zs ys in

size (conss z val) Oy

We need to fill in: val : Listg A n

Oy : ysn = 0+ ysn xs : Listg A xsn

DQ . Sh = (S xsn) + Ysn ys - L|StSAyS’]’L

P n = xSn + ysn
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Example — Sized append

The full definition of append is:

lot xs @ Lists A xsn  ys : Listg A ysn

append zs ys : Size Lists A (An:N. Av:Lists A n. n = zsn + ysn)
append nils ys + size ys (refl ysn)
append (conss = zs) ys +— let (size val p) = append zs ys in

size (conss = val) (refl_s p)

refl_s is a function which lifts a proof into a proof of equality of
SUCCESSOTS.



Higher Order Functions — twice

The framework can also deal with higher order functions, e.g. twice:

twice : (a -> a) -> a -> a
twice f x = f (f x)

However, the size and predicate depend on the specific instance of f

used, so the type of twice in our framework reflects this:

[ i Vsa :N. A sa” — Size A (An:N. Av: A n. ) a: Asa

let twice fa : Size A(An:N. Av: A n. )
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Higher Order Functions — twice
The framework can also deal with higher order functions, e.g. twice:
twice f x = f (f x)

However, the size and predicate depend on the specific instance of f
used, so the type of twice in our framework reflects this:

P :Vn:N.Va:An.N—x sf : N— N

trans : P say a1 (sf sa) — P sas as (sf as1) — P sag b (sf (sf sa))

ot [+ Asa— (SizeAAn:N.Av:An. Pno(sfsa)) a: Aas
let

twice P sf trans f a : (Size A (An:N. dv:An. Pnov(sf (sf sa))))
twice Psf trans f ©  +— let (size valy p1) = f xin
let (size vals po) = [ walyin

size valg (trans p1 p2)



Using twice

twice itself gives no concrete size information. When we apply it,
however, for example to double (where Nats is a sized natural
number type). ..

— double : Size Nats (An:N. Ap:Nats n. n = 2 % in)

... we get the obvious cost:

—  twicedouble i : Size Nats (An:N. Ap:Nats n.n =4 % in)

twicedouble i — twice (Aa,b:N.a = b) (An:N.2x*n)O; double ;
twice also requires us to provide a transitivity proof in Oj:
Oy : Va,b,c:Noa=2%xb—>b=2%xc—a=2%(2%c¢)

This is solved automatically without difficulty.



Higher Order Functions — fold

fold is effectively a more general twice, applying a function any
number of times. We can express this in our source language as
follows:

fold : (a ->b ->a) -> a -> List b -> a
fold £ a nil = a
fold f a (cons x xs) = f (fold f a xs) x

How might we express this in our framework? We have to account for:
e The size effect of .
e The property that ['s size must satisfy.

e Maintaining this property through the recursive calls.



Higher Order Functions — fold

The type of fold, in our framework:

P :Vn:NNAn—->N-—-% sf : N>N-—=N

Prefl : Vn:N.Va:An.Pnan

Ptrans : Yan:N.Va:A an.Von:N.Vb: A bn.Ven:N. Vdn:N.
Pbnbdn — Pana(sf bnbn) — P an a (sf cn dn)

[+ Asa— Bbn' — Size A(An:N.  v:An. Pnuv(sfsabn’))

a : Aan zs : Listg B zsn
let

fold P sf trans f a xs : Size A (An:N. Av: A n.
P n v (foldCost sf A B f a xs))

foldCost is a function which calculates the cost of folding a specific
list, following the same structure as fold.



Conclusions and Further Work

Initial results are encouraging:

e Our framework deals with higher order functions and sum types
(also done e.g. partition, map, filter, either ...).

e Complex machinery required, but it allows:
— Explicit checking of proofs of size bounds.

— Exposing of more complex proof goals to users.

e In a multi-stage setting, type preservation ensures property

preservation.
There is much further work to do, e.g.:

e Currently working on a theorem proving library for Haskell, to help
automate the building of TT terms.

e Extending the framework to deal with other metrics, and to

consider staging.



