
Proving Size Bounds with Dependent Types

Edwin Brady and Kevin Hammond
University of St Andrews

WG 2.11 — 27th January 2006



Introduction and Motivation

Obtaining accurate space and time information about computer

programs is important in a number of areas. e.g. Embedded systems.

However, there is a trade-off between effective program analyses and

high level abstraction mechanisms.

We aim to implement a (multi-stage) functional language which avoids

this trade-off, with:

• Strong compile-time guarantees about resource boundedness.

• Useful abstraction mechanisms e.g. higher order functions,

recursive data structures, recursive functions.

We are developing a framework based on dependent types.



Why Dependent Types?

Characteristic feature of a dependent type system:

• Types may be predicated on Values.

This allows us to:

• Express size bounds in a function’s type.

• Verify correctness of externally specified size constraints (either

user specified, or from an external inference system).

• Express arbitrarily complex constraints.

• Expose proof obligations to the user.

The source language need not be dependently typed; we use a

dependently typed core language to explain source language programs.



Resource Framework

Basic idea 1: We predicate each user defined type on a N.

e.g. A source language List type . . .

data List a = nil | cons a (List a)

. . . becomes a dependent “List with size” type:

data A : N→ ? n : N
ListS A : N→ ?

where
nilS : ListS A 0

x : A an xs : ListS A xsn
consS x xs : ListS A (s xsn)

The framework is independent of the meaning we attach to size. We

could choose, e.g., length (as here), required heap cells, total size of

list and all elements . . .



Resource Framework

Basic idea 2: We pair all values with a proof of a predicate.

data X : N→ ? P : ∀n :N. X n → ?
Size X P : ?

where val : X n p : P n val
size val p : Size X P

Each function now returns a Size, rather than a simple value. e.g. a

sized list, carrying a proof of a length property:

size (consS x xs) (refl (s xsn))

: Size (List A) (λn :N. λv : (List A) n. n = s xsn)

refl constructs a reflexive proof of equality.



Example — Sized append

Consider, e.g., the append function, defined in our source language as:

append : List a -> List a -> List a

append nil ys = ys

append (cons x xs) ys = cons x (append xs ys)

What size properties does this definition satisfy?

How do we translate it into our framework?



Example — Sized append

Translated into our framework, append returns values paired with a

proof object; we use a high level notation similar to Epigram:

let xs : ListS A xsn ys : ListS A ysn
append xs ys : Size ListS A (λn :N. λv :ListS A n. n = xsn + ysn)

append nilS ys 7→ size ys 21

append (consS x xs) ys 7→ let (size val p) = append xs ys in

size (consS x val) 22

We need to fill in:

21 : ysn = 0 + ysn

22 : s n = (s xsn) + ysn

val : ListS A n

xs : ListS A xsn

ys : ListS A ysn

p : n = xsn + ysn



Example — Sized append

Translated into our framework, append returns values paired with a

proof object; we use a high level notation similar to Epigram:

let xs : ListS A xsn ys : ListS A ysn
append xs ys : Size ListS A (λn :N. λv :ListS A n. n = xsn + ysn)

append nilS ys 7→ size ys 21

append (consS x xs) ys 7→ let (size val p) = append xs ys in

size (consS x val) 22

We need to fill in:

21 : ysn = ysn

22 : s n = s (xsn + ysn)

val : ListS A n

xs : ListS A xsn

ys : ListS A ysn

p : n = xsn + ysn



Example — Sized append

The full definition of append is:

let xs : ListS A xsn ys : ListS A ysn
append xs ys : Size ListS A (λn :N. λv :ListS A n. n = xsn + ysn)

append nilS ys 7→ size ys (refl ysn)

append (consS x xs) ys 7→ let (size val p) = append xs ys in

size (consS x val) (refl s p)

refl s is a function which lifts a proof into a proof of equality of

successors.



Higher Order Functions — twice

The framework can also deal with higher order functions, e.g. twice:

twice : (a -> a) -> a -> a

twice f x = f (f x)

However, the size and predicate depend on the specific instance of f
used, so the type of twice in our framework reflects this:

let
f : ∀sa ′ :N. A sa ′ → Size A (λn :N. λv :A n. ) a : A sa

twice f a : Size A (λn :N. λv :A n. )



Higher Order Functions — twice

The framework can also deal with higher order functions, e.g. twice:

twice : (a -> a) -> a -> a

twice f x = f (f x)

However, the size and predicate depend on the specific instance of f
used, so the type of twice in our framework reflects this:

let

P : ∀n :N. ∀a :A n. N→ ? sf : N→ N

f : ∀sa ′ :N. A sa → Size A (λn :N. λv :A n. P n v (sf sa)) a : A as
twice P sf f a : Size A (λn :N. λv :A n. P n v (sf (sf sa)))



Higher Order Functions — twice

The framework can also deal with higher order functions, e.g. twice:

twice : (a -> a) -> a -> a

twice f x = f (f x)

However, the size and predicate depend on the specific instance of f
used, so the type of twice in our framework reflects this:

let

P : ∀n :N. ∀a :A n. N→ ? sf : N→ N

f : ∀sa ′ :N. A sa → Size A (λn :N. λv :A n. P n v (sf sa)) a : A as
twice P sf f a : (Size A (λn :N. λv :A n. P n v (sf (sf sa))))

twice P sf f x 7→ let (size val1 p1) = f x in

let (size val2 p2) = f val1 in

size val2 21



Higher Order Functions — twice

The framework can also deal with higher order functions, e.g. twice:

twice f x = f (f x)

However, the size and predicate depend on the specific instance of f
used, so the type of twice in our framework reflects this:

let

P : ∀n :N. ∀a :A n. N→ ? sf : N→ N

trans : P sa1 a1 (sf sa) → P sa2 a2 (sf as1) → P sa2 b2 (sf (sf sa))

f : A sa → (Size A (λn :N. λv :A n. P n v (sf sa))) a : A as
twice P sf trans f a : (Size A (λn :N. λv :A n. P n v (sf (sf sa))))

twice Psf trans f x 7→ let (size val1 p1) = f x in

let (size val2 p2) = f val1 in

size val2 (trans p1 p2)



Using twice

twice itself gives no concrete size information. When we apply it,

however, for example to double (where NatS is a sized natural

number type). . .

let i : NatS in
double i : Size NatS (λn :N. λp :NatS n. n = 2 ∗ in)

. . . we get the obvious cost:

let i : NatS in
twicedouble i : Size NatS (λn :N. λp :NatS n. n = 4 ∗ in)

twicedouble i 7→ twice (λa, b :N. a = b) (λn :N. 2 ∗ n) 21 double i

twice also requires us to provide a transitivity proof in 21:

21 : ∀a, b, c :N. a = 2 ∗ b → b = 2 ∗ c → a = 2 ∗ (2 ∗ c)

This is solved automatically without difficulty.



Higher Order Functions — fold

fold is effectively a more general twice, applying a function any

number of times. We can express this in our source language as

follows:

fold : (a -> b -> a) -> a -> List b -> a

fold f a nil = a

fold f a (cons x xs) = f (fold f a xs) x

How might we express this in our framework? We have to account for:

• The size effect of f .

• The property that f ’s size must satisfy.

• Maintaining this property through the recursive calls.



Higher Order Functions — fold

The type of fold, in our framework:

let

P : ∀n :N. A n → N→ ? sf : N→ N→ N

Prefl : ∀n :N. ∀a :A n. P n a n

Ptrans : ∀an :N. ∀a :A an. ∀bn :N. ∀b :A bn. ∀cn :N. ∀dn :N.

P bn b dn → P an a (sf bn bn) → P an a (sf cn dn)

f : A sa → B bn ′ → Size A (λn :N. λv :A n. P n v (sf sa bn ′))

a : A an xs : ListS B xsn

fold P sf trans f a xs : Size A (λn :N. λv :A n.

P n v (foldCost sf A B f a xs))

foldCost is a function which calculates the cost of folding a specific

list, following the same structure as fold.



Conclusions and Further Work

Initial results are encouraging:

• Our framework deals with higher order functions and sum types

(also done e.g. partition, map, filter, either . . . ).

• Complex machinery required, but it allows:

– Explicit checking of proofs of size bounds.

– Exposing of more complex proof goals to users.

• In a multi-stage setting, type preservation ensures property

preservation.

There is much further work to do, e.g.:

• Currently working on a theorem proving library for Haskell, to help

automate the building of TT terms.

• Extending the framework to deal with other metrics, and to

consider staging.


