
Language extensions for

parallel programming:

opportunities and challenges

Eric Van Wyk

University of Minnesota

Bloomington, WG2.11, August 22-25, 2016

1 / 27

Language extensions and
the expression problem

2 / 27

Directions of Extensibility
va

ri
an

ts

operations

base
FP - new functions

OOP - new
subclasses

extension

OOP - modify
classes to

add methods

FP -
modify

functions
to add
clauses

3 / 27

The Expression Problem

Requirements for solving it:

1. extensibility in both directions

2. strong static typing

3. no modification of existing code

4. separate compilation and type checking

Old problem, new name popularized by Phil Wadler.

Allows

1. a linear ordering of extensions
Base / E1 / E2

2. E2 developer writes code to handle E1

4 / 27

Independently extensible version

Requirements for solving it:

1. extensibility in both directions

2. strong static typing

3. no modification of existing code

4. separate compilation and type checking

5. no linear ordering of extensions, Zenger and Odersky
Base / E1 / E2

Base / E2 / E1

Allows

1. “glue” code to compose extensions
written by 3rd party to compose E1 and E2

e.g. the operation in E1 for variant in E2

5 / 27

Extensible Languages

Base = Host Programming Language
va

ri
an

ts
=

sy
nt

ax

operations = semantic analysis, translations

C

extended C

inductive datatypes extension

regex matching extension

parallel programming extension

6 / 27

typedef datatype Tree Tree;

datatype Tree {

Fork (Tree*, Tree*, const char*);

Leaf (const char*);

};

cilk int count_matches (Tree *t) {

match (t) {

Fork(t1,t2,str): {

int res_t, res_t1, res_t2;

spawn res_t1 = count_matches(t1);

spawn res_t2 = count_matches(t2);

res_t = (str =~ /foo[1-9]+/) ? 1 : 0;

sync;

cilk return res_t1 + res_t2 + res_t ;

} ;

Leaf(/foo[1-9]+/): { cilk return 1 ; } ;

Leaf(): { cilk return 0 ; } ;

} ;

}

}
7 / 27

Another Expression Problem

Requirements for solving it:

1. extensibility in both directions

2. strong static typing

3. no modification of existing code

4. separate compilation and type checking

5. no linear ordering of extensions
Host / E1 / E2

Host / E2 / E1

6. no glue code, composition is automatic

Allows

I a non-expert programmer to do the composition

But it requires

I extensions are somehow realizable in the base
8 / 27

ableC- extensible specification of C11

edu:umn:cs:melt:IndData

org:bar:cilk

com:foo:RegEx

⇓
=⇒ =⇒ Silver =⇒ =⇒

⇑
edu:umn:cs:melt:ableC

myProgram.xc

⇓
cpp

⇓
myProgram.xc cpp

⇓
ableC-myProject

⇓
myProgram.c

⇓
gcc

⇓
a.out



−scanning
−parsing
−AST
construction

−type checking

−optimization

−C code

generation

9 / 27

Another Expression Problem

How we solve it for extensible languages:

1. extensibility in both directions Attribute grammars

2. strong static typing Effective completeness analysis

3. no modification of existing code Attribute grammars

4. separate compilation and type checking Modular
effective completeness analysis

5. no linear ordering of extensions Attribute grammars
Host / E1 / E2

Host / E2 / E1

6. no glue code, composition is automatic Forwarding

Requires

I extension language constructs translate down to host
language constructs

10 / 27

Why language extensions for parallel
programming?

11 / 27

Programmer’s perspective

A great deal of diversity in linguistic abstractions for parallel
programming.

No “right” set of abstractions for parallel programming.

What is right depends on many factors:

I the application or problem at hand,

I sophistication and personal preferences of the
programmer,

I the degree of performance desired and effort required to
achieve it.

I ...

12 / 27

Choosing abstractions has a high up front cost

I Adopting a new language - high up front cost - hard to
experiment in one’s current project.

Switching a project to, say X10, is expensive.

I Also prevents one from using different forms of parallelism
in different parts of the same program.

13 / 27

Researcher’s perspective

Consider Cilk.

I Researchers built a new C source-to-source translator:
parsing and semantic analysis. This is a lot of work.

I Long journey from research compiler into Intel’s C
compilers.
A trip that is rarely repeated.

Parallel programming may be a “killer app” for extensible
languages.

14 / 27

Cilk as a language extension

15 / 27

The MIT implementation of Cilk

Two significant components:

I a Cilk-to-C translator

I a sophisticated task-based run-time implementing efficient
work-stealing scheduler, written in C.

A language extension replaces the translator,
but not the run-time.

16 / 27

The ableC implementation

I Parsing, simple.

I Semantic analysis
I A cilk return used in cilk function.
I spawn calls a cilk function.

I Code generation
I create a fast and slow “clone” for each cilk function.
I requires handling,e.g., the match statement

17 / 27

Local transformations

Extension syntax locally expands (forwards) to its translation
to C.1

I MIT Cilk:
res t1 = spawn count matches(t1);

I ableC Cilk:
spawn res t1 = count matches(t1);

Code generated uses res t1 in a few places and thus needs to
be part of the extension.

1Lifting of new declarations is supported.
18 / 27

Adding, not changing behavior

Extensions can add to, but not change, behavior of existing
host language constructs.

I MIT Cilk:
return res t1 + res t2 + res t ;

I ableC Cilk:
cilk return res t1 + res t2 + res t ;

Code generated for cilk return is non-trivial in one of the
clones.

A non-cilk return in a cilk function does raise an error.

19 / 27

Composition vs Expressiveness

I Guarantees of composability impose some restrictions.

I These previous issues are concerns for any extension.

20 / 27

Challenges

21 / 27

Multiple parallel programming extensions

Compute the sum of the squares of numbers stored in a tree
using 3 forms of parallelism.

typedef datatype Tree Tree;

datatype Tree {

Fork (Tree*, Tree*, const int, const float*);

Leaf (const int, const float*);

};

22 / 27

int square (int x) { return x * x; }

cilk int treeSumOfSqs (Tree *t) {

match (t) {

Fork(t1, t2, size, values): {

int t1res, rest2, lsos;

spawn t1res = treeSumOfSqs(t1);

spawn t2res = treeSumOfSqs(t2);

spawn lsos = sumOfQuares(size, values);

sync;

cilk return t1res + t2res + lsos;

}

Leaf(size, values): {

cilk return

fold ((+), 0.0, size,

map (square, size, values));

} ;

}

} 23 / 27

cilk int sumOfSquares (const int size,

const float *values) {

int sos = 0;

transform {

for (int i=0; i<size; ++i)

sos = sos + square(values[i]);

} by split i by 4 into i_in, i_out,

vectorize i in;

cilk return sos;

}

24 / 27

Static interaction

I Don’t parallelize inner loops.

I Similarly, perhaps “inner” parallel constructs should
generate sequential code.

The parallel map/fold used in leaves of the Cilk tasks
should perhaps just be executed sequentially.

I What is the static protocol through which
independently-developed extensions communicate?

I The symbol table through which extensions may
communicate is an example of a static protocol.

25 / 27

Dynamic interaction

Parallel run-times manage and schedule resources

I Different extension run-times may conflict

I over schedule resources

I result in low performance

Is there some common run-time applicable to many
abstractions?

26 / 27

Next steps
I More systematic implementation of various approaches to

parallel programming as language extensions.

I What parallel programming features should we
implement?

I Yours?

I What can’t work here?
Negative examples are important here.

I Collaboration opportunities.

Thanks for your attention.

27 / 27

