Parameterized reference attributes:
examples and properties

Gorel Hedin & Emma Sdderberg
Computer Science, Lund University

IFIP WG 2.11 meeting, Halmstad, June 25, 2012

Parameterized attributes are part of reference attribute grammars.

Agenda

Background

— Reference Attribute Grammars

— JastAdd

Examples of parameterized attributes
— Name analysis, Type checking, ...
Properties

— Incremental evaluation, ...

* Ongoing work

Conclusions

G. Hedin: Reference Attributed Grammars. Informatica (Slovenia) 24(3): (2000). In
http://www.informatica.si/PDF/Informatica 2000 3.pdf

Reference Attribute Grammars

AST: abstrac syntax tree

[Knuth68]: Attributes are computed properties of nodes, defined by equations:

T N.a = expr without visible side-effects
defined in node: synthesized
defined in parent: inherited

[Hedin00]: Attributes can be references:
Decl Use.decl = ...
Set<Stmt> Stmt.succ = ...

Decl "x” While

Remote access via references:
Type Use.type = decl.type

Declarative implementation
Extensible: just add more attributes and equations
Attributes evaluated on demand

Attributes cached for efficiency Attributed AST is the full program model

JastAdd: metacompilation tool based on RAGs

Reference attribute grammars are an extension to Knuth’s attribute grammars (Knuth
68)

Knuth’s attribute grammars include synthesized and inherited attributes.

Reference attribute grammars extend Knuth’s grammars with reference attributes and
parameterized attributes.

Note that:

-Graphs can be defined on top of the AST

-The graphs can be cyclic

-Data structures needed during compilation can be modelled as attributes on the AST.
-Attributes are evaluated on demand, and cached for efficiency. For example, if the
attribute Use.type is demanded, the right-hand side of its equation is evaluated
(decl.type), and in order to do so, the decl attribute is first evaluated, evaluating the
right-hand side of its equation, and so on.

Some JastAdd applications

T

jastadd.org
[HedMago3, EkmHedo7]

JastAdd]

jmodelica.org

JastAdd is a metacompilation system implementing RAGs.

A full Java compiler has been implemented in JastAdd (JastaddJ). (Ekman and Hedin,
OOPSLA 2007)

A key advantage of RAGs and JastAdd is the strong support for modularization.

For example extending the Java 1.4 compiler with modules for Java 5 and Java 7.

JastAddJ has been extended both with language extensions and with different
analyses.

Another large application of JastAdd is an open-source compiler for Modelica, called
JModelica.org.

Modelica is a language for modeling and simulation of physical systems.

Optimica is an extension to Modelica to describe optimization problems for physical
systems.

Optimica has been implemented as a modular extension to Modelica, using JastAdd.
(Hedin, Akesson, Ekman, IEEE Software 2011)

Attribution mechanisms

Synthesized attributes [Knu68]

Inherited attributes [Knu68]

Reference attributes [Hed00]

* Parameterized attributes [Hed00, EkmO06]

* Broadcasting [EkmO06]

* Rewrites [EkmHed04]

* Nonterminal attributes (higher-order) [VogSwiKui89]
 Circular attributes [Far86, MagHed07]

* Collection attributes [Boy92, MagEkmHed09]

JastAdd supports several attribution mechanisms.
This talk focuses on parameterized attributes.

Parameterized attributes

Attributes can have parameters:
TN.a(Tlpl,T2p2)=..

A parameterized attribute has one element for
each possible params-tuple.

The number of elements is (usually) unbounded.

Only demanded elements are computed.

A parameterized attribute is similar to a method (without side-effects).

But it differs in that the results are cached (memoized).

And it differs in that circularity is checked dynamically. (If an attribute depends on
itself, this is reported as an error at evaluation time. Unless the attribute is explicitly

defined as circular in which case it is evaluated iteratively until a fixed point is
reached.)

And if the attribute is inherited (in the attribute-grammar sense), the equation/
implementation is not located in the same node, but instead in a parent of the node.

Name analysis patterns

oxciringrave J g name NN
syn Decl decl = lookup(ID)

inh Decl lookup(String)

syn localLookup(String) =
search through subtree

DefinesVisibilityForSubtree
eq lookup(...)|= ... *lookup ...

DefinesSpecificVisibility

syn specificLookup(String) = ... *lookup ...

NeedsToFindVisibleDecl

For illustration of parameterized attributes, we take a look at name analysis.

In RAGs, you typically use some small name analysis patterns that are combined to
implement name analysis for a specific language.

For nodes that Use names, you add a dec/ attribute that will refer to the appropriate
declaration.

The decl attribute is defined using an inherited attribute lookup, that is
parameterized.

Lookup will return a reference to the appropriate Decl node. But exactly how that is
done is delegated to the context, by declaring lookup as an inherited attribute.

The parent defining the lookup attribute typically will do so by delegating to other
attributes that are called lookup or similar.

A language construct with local declarations, i.e., a block, defines an attribute
typically called localLookup that searches a local part of the AST to find an
appropriate declaration node.

There can also be additional specific lookup attributes, that delegate to other lookup
attributes. This can be used, e.g., to implement inheritance in object-oriented
languages. These specific lookup attributes are typically synthesized, in contrast to
the inherited lookup attribute.

Example: block structure

Program eq P;(lagr‘am.getBlock().1ookup(String id) =
null;
eq looKup = ...

syn Block.localLookup(String id) {
for (Decl d : getDecls()) {
if (d.getID().equals(id))
return d;
}

return null;

}

lookup(String)
localLookup(String)

Block

lookup(String)
:1[:18 @ o calLookup(String)

eq Block.getChild(int i).lookup(String id) {
Decl d = locallLookup(id);
if (d != null) return d;
return lookup(id);

}

lookup(String)

decl

syn Decl Use.decl = lookup(getID());
inh Decl Use.lookup(String);

Here is a concrete example of applying the patterns: implementing name analysis for
a simple block structured language.

The Use node has a decl attribute that is defined by calling the inherited lookup
attribute with the Use’s name (getID) as a parameter.

The lookup attribute of the Use node is defined by the parent Block, by first checking
if the declaration is among the local declarations, and if not, returns the value of its
own lookup attribute for the same parameter, which in turn is defined by its Block
parent.

The localLookup attribute of a Block, simply traverses the local declarations and

returns a reference to the appropriate declaration, if found. Otherwise, null is
returned.

eq Class.getChild().lookup(String id) {
Decl d = localLookup(id);

Classes with methods 17 (d 12 noil) retumn ds

d = getSuper().decl().classLookup(id);
if (d != null) return d;
return lookup(id);

LGT(ET M localLookup(String)

lookup(String)
Class localLookup(String)
g m 2 sLookup(String)
s
ec

lookup(String)
W EUTE B [ocallookup(String)

lookup(String)
~———ded]

Here is an example of applying the name analysis patterns for a language with both
block structure and inheritance.

Most of the attributes are similar to the ones in the previous example.
Both Classes and Methods have localLookups to find their local declarations.

Classes additionally have a classLookup attribute. This is a specific lookup attribute
that combines the local declarations with the declarations found in the superclasses.

The superclass is located via the decl attribute of Super. Super is actually a kind of Use
node: it uses the name of the superclass. So we add decl and lookup attributes to
Super, and this gives us a reference to the superclass.

The Class.lookup equation simply combines the local lookup, the classLookup and its
own inherited lookup attribute to define visibility for Uses inside the class.

Note, the code above is just a sketch. For a complete running example, see the
Picolava example at the JastAdd.org site.

More examples of parameterized attributes

11 0 B subType(TypeDecl)

Program | libCompilationUnit(String fullname) ‘
(=1 a0\ (=14 s 1e [0]=1s M| particularMethodDecl(List typeArgs) |

Here are some more examples of parameterized attributes.

Types are represented by nodes in the syntax tree.

With the parameterized attribute subtype, you can ask one type node if it is a subtype
of another type.

This attribute is typically implemented with double dispatch in order to elegantly
compare related kinds of types.

libCompilationUnit is a so called nonterminal attribute (higher-order attribute).

A nonterminal attribute is an attribute that has a syntax tree as its value (Vogt,
Swierstra, Kuiper, 1989)

The attribute Program.libCompilationUnit(String fullname) returns an AST for the
compilation unit for the file corresponding to the compilation unit named “fullname”.
This tree is constructed by parsing that file.

The attribute GenericMethodDecl.particularMethodDecl(List typeArgs) is also a
parameterized nonterminal attribute that returns a method declaration that is
specialized with a list of specific type arguments.

10

Parameterized reference attributes

The value of each attribute is small: B /
often just a single reference

. . lookup("z”
Enables computed properties (attributes)

to be defined in a very finegrained way

Because of each element only defining a small piece of information, this makes
parameterized attributes very suitable for incremental computations. As will be
shown on the following slides.

Incremental behavior:
Change the type of a variable
IEI Modified - bool
[@] Affected { 4nt a; 1
Blosk | (= a =44 ﬂ
: }
|
¢ :n SN
o ,]
15 Q [1dtae] :E‘ * \'-\I:" e)2 .
Dael l‘*_[/‘ : ou —
7‘ AG 5"""""//“7HCorresponding RAG

A modification of a declaration leads to many affected attributes in an ordinary AG.
A corresponding RAG has much fewer affected attribute.

Affected attribute means attribute with a new value.

12

AGs versus RAGs
N

Symbol tables/Environments Encoded in attributes The attributed AST itself

Size of attribute values Many very large Small: typically a single
environment values reference

Computation of attributes Typically data-driven, By demand, non-strict
strict evaluation

Incremental evaluation Optimal change Non-optimal algorithm.
propagation algorithm Flush dependent attributes.
[Reps82] Abort flush for cache-

independent attributes.

Number of affected attribute Many Few

after AST modification

Performance Non-practical, even if Optimal for practical cases.

optimal. Does not scale. Scales to large programs.

For ordinary AGs, there is an optimal change propagation algorithm (Reps 82). (The
number of reevaluated attributes is O(AFFECTED).)
RAGs cannot use this algorithm, but have much fewer affected attributes.

Cache-independent attributes

eq Block.localLookup(String id) {
for (Decl d : getDecls()) {
if (d.getID().equals(id))
return d;
}

return null;

}

eq Block.getChild().lookup(String id) {
Decl d = localLookup(id);
if (d !=null) return d;
return lookup(id);

}

cache-independent

211572 '@ |ocalLookup(String)

El Intrinsic attribute (token)

lookup(String)
Block localLookup(String)

W17 lookup(String)

f

cache-dependent

A cache-independent attribute depends only on the tree and tokens. It does not

depend on any cached attribute value.

Such attributes can be reevaluated by the incremental RAG algorithm, and
propagation of flush can be aborted if the value is unchanged.

14

[Modified Change the name of an unused global
[@] Affected (new value)
[[a] Unaffected but flushed/reevaluated)

[[a] Dependent but not flushed. - o -

non
wv
[

I =h
-

~N

“.

RAG

In this example we change an unused global variable c to another unused name i.
Intuitively, we would expect this change to not have any effect at all on attributes.

Here there are very many affected attributes in the AG.
The RAG actually has no affected attributes at all.

A couple of cache-independent attributes are reevaluated for the RAG (the orange

ones).
But since the values of those attributes are the same, propagation of flush is aborted

at this point.

The green attributes are those that *could* change value, depending on the actual
change to the declaration c.

n_n n_._n

For example, if we changed "c” to “g”, then some of the green attributes would need
to be reevaluated.

So if we had a naive flush propagation (without checking cache-independent
attributes), we would have flushed also the green attributes.

15

[@] Modified OO program
[@] Affected (new value)
[[@] Unaffected but flushed/reevaluated)

[[a] Dependent but not flushed.
int a;
int b;
class A {
inte5 g

}

class B extends A {
b = 3;
e = 4;

0

class C extends B {
5;
6;

class D extends C { i ,)
int f A
class E { ET
¢- 7 W

, } RAG =3

Here is an example for an object-oriented program.
When the unused variable c is renamed to g, and g is used inside the class E.

The affected attributes here are the decl attribute of the g-use, lookup(”g”) attributes
in blocks visible from the g-use, and the localLookup(”g”) of the block containing the
modified declaration.

Status

* Fine- and coarse-grained dependency tracking and flushing

* Dynamic recognition of cache-independent attributes

* Abortion of flush propagation for unchanged cache-independent
attributes

* Ongoing implementation of “fast” local lookups (complete evaluation
at first access)

Ill

* Ongoing refactorization of JastAddJ to only use “small” attributes for

critical parts of analysis.
* Ongoing evaluation
* Tech report available

The tech report: E. S6derberg and G. Hedin: Incremental Evaluation of Reference
Attribute Grammars using Dynamic Dependency Tracking. April 2012.
http://fileadmin.cs.lth.se/sde/publications/reports/2012-Soderberg-RAGsIncEval-
report.pdf

Conclusions

* Parameterized attributes allows computed
properties to be split into very small pieces.

* This is a key to enabling good incremental
behavior.

