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Background

Code duplication is a problem whenever we 
generate code (FFTW, Fridge, Stratego, …)

Slows down both
– Generation time, and

– Runtime of generated program

Particular domain:  Dynamic programming 
– Interesting feature:  Memoization

– Widely used (potential killer app)



Ideal:  Code would look like math
// gib : int * (int * int) -> int

let rec gib (n,(x,y)) = 

match n with 

| 0 -> x

| 1 -> y

| _ -> gib (n-2,(x,y)) + 

gib (n-1,(x,y))



Reality:  Need memoization

Let’s use a simple implementation of a store:

let s0 = fun x -> None  // empty store

let ext s n m =         // extend

fun y -> if n = y 

then Some m 

else s y

let lookup s n  = s n   // lookup



Memoizing code
// gib_memo : int * (int * int) -> state -> state * int

let rec gib_memo (n,(x,y)) s = 

match (lookup s n) with 

| Some r -> (s,r)

| None ->

(match n with 

| 0 -> (s,x) 

| 1 -> (s,y)

| _ ->  

let (s1,r1) = gib_memo (n-2,(x,y)) s in 

let (s2,r2) = gib_memo (n-1,(x,y)) s1 in 

(ext s2 n (r1+r2), r1+r2))



Great!  Now let’s stage it!
// gib_memo'  : int * (int code * int code) 

-> state' -> state' * int code

let rec gib_memo' (n,(x,y)) s = 

match (lookup s n) with 

| Some r -> (s,r)

| None -> 

(match n with 

| 0 ->  (s,x) 

| 1 ->  (s,y)

| _ -> 

let (s1,r1) = gib_memo' (n-2,(x,y)) s in 

let (s2,r2) = gib_memo' (n-1,(x,y)) s1 in 

(ext s2 n .< .~r1 + .~r2 >. , .< .~r1 + .~r2 >.))



How well does this work?
It’s a valid staging

– MSP talk:  It’s a well-typed two-level program

– PE talk:  Congruence is satisfied

Is it useful?
.< fun (x,y) -> 

.~(snd (gib_memo' (5,(.<x>., .<y>.))          

s0)) >.;;

Returns:  
.<fun (x, y) ->  

((y + (x+y)) + ((x+y) + (y + (x+y))))>.



What’s the source of this problem?
// gib_memo'  : int * (int code * int code) 

-> state' -> state' * int code

let rec gib_memo' (n,(x,y)) s = 

match (lookup s n) with 

| Some r -> (s,r)

| None -> 

(match n with 

| 0 ->  (s,x) 

| 1 ->  (s,y)

| _ -> 

let (s1,r1) = gib_memo' (n-2,(x,y)) s in 

let (s2,r2) = gib_memo' (n-1,(x,y)) s1 in 

(ext s2 n .< .~r1 + .~r2 >. , .< .~r1 + .~r2 >.))



This example illustrates that

the code duplication problem arises when 
– we have partially dynamic data

– when components of this structure need to share 
code

affects both specialization time and runtime

should happen almost all the time



How do we usually deal with 
duplication?
The power function can help us explain key points

// square : int -> int

let square x = x * x  

// power : int -> int -> int

let rec power x n =

if n = 0 then 1

else if n mod 2 = 0 

then square (power x (n / 2))

else x * (power x (n - 1 ))



A first attempt at staging it

// square' :  int code -> int code

let square' x = .< .~x * .~x >.

// power' : int code -> int -> int code

let rec power' x n = 

if n = 0 then .<1>.

else if n mod 2 = 0 

then square' (power' x (n/2))

else .< .~x * .~(power' x (n-1)) >.

.< fun x -> .~(power' .<x>. 5) >.;;

Returns: .<fun x -> (x * (((x*1) * (x*1)) * ((x*1) * (x*1))))>.



Easily fixed:  “Let-insertion”
// square' :  int code -> int code

let square' x = .< let y = .~x  in y * y >.

// power' : int code -> int -> int code

let rec power' x n = 

if n = 0 then .<1>. 

else if n mod 2 = 0 

then square' (power' x (n/2))

else .< .~x * .~(power' x (n-1)) >.

.< fun x -> .~ (power' .<x>. 3) >.;;

Returns:  .<fun x -> (x * let y_3  = let y_2  = (x * 1) 
in (y_2 * y_2) 

in (y_3 * y_3))>.



Does it always work?
Consider a more “complex” power:

// ( ** ) : int * int -> int * int -> int * int

let ( ** ) (a,b) (c, d) = (a*c - b*d, a * d + b * c)

let square x = x ** x

let rec power x n =

if n = 0 then (1,0)

else if n mod 2 = 0 

then square (power x (n / 2))

else x ** (power x (n - 1 ))



Let’s stage it
// ( ** ) : (int code * int code) -> …same… -> …same…

let ( ** ) (a,b) (c,d) = 

(.< .~a * .~c - .~b * .~d >. , .< .~a * .~d + .~b * .~c >.)

// square'  : int code * int code -> int code * int code

let square' x = x ** x 

// power' : int code * int code -> int -> int code * int code

let rec power' x n = 

if n = 0 then ( .<1>., .<0>.)

else if n mod 2 = 0 

then square' (power' x (n/2)) 

else x ** (power' x (n-1))

Does this work?



This is exactly the same 
problem with gib



Solution:  Convert to CPS
// ( ** ) : int code * int code -> int code * int code 

-> (int code * int code -> 'a     ) -> 'a

let ( ** ) (a,b) (c,d) = fun k -> 

k ( .< .~a * .~c - .~b * .~d >., 

.< .~a * .~d + .~b * .~c >.)



What CPS lets us do
// ( ** ) : int code * int code -> int code * int code 

-> (int code * int code -> 'a code) -> 'a code

let ( ** ) (a,b) (c,d) = fun k -> 

.< let a' = .~a in 

let b' = .~b in 

let c' = .~c in 

let d' = .~d in

.~(k ( .< a' * c' - b' * d' >., 

.< a' * d' + b' * c' >.)) >.



Solution:  Convert to CPS
Rest is easy

let square' x = x ** x

let rec power' x n k = 

if n = 0 then k ( .< 1 >., .< 0 >.)

else if n mod 2 = 0 

then (power' x (n/2)) (fun r -> square' r k)

else (power' x (n-1)) (fun r -> (r ** x) k)



Back to gib:  Convert to CPS
// gib_memo' : int * (int code * int code) 

-> state' -> (state' * (int code) -> 'a) -> 'a

let rec gib_memo' (n,(x,y)) s k  = 

match (lookup s n) with 

| Some r -> k (s,r)

| None -> 

(match n with 

| 0 -> k (s,x) 

| 1 -> k (s,y)

| _ -> 

gib_memo' (n-2,(x,y)) s (fun (s1,r1) -> 

gib_memo' (n-1,(x,y)) s1 (fun (s2,r2) -> 

k (ext s2 n .< .~r1 + .~r2 >. , .< .~r1 + .~r2 >.))))



Recall source of duplication…
// gib_memo' : int * (int code * int code) 

-> state' -> (state' * (int code) -> 'a) -> 'a

let rec gib_memo' (n,(x,y)) s k  = 

match (lookup s n) with 

| Some r -> k (s,r)

| None -> 

(match n with 

| 0 -> k (s,x) 

| 1 -> k (s,y)

| _ -> 

gib_memo' (n-2,(x,y)) s (fun (s1,r1) -> 

gib_memo' (n-1,(x,y)) s1 (fun (s2,r2) -> 

k (ext s2 n .< .~r1 + .~r2 >. , .< .~r1 + .~r2 >.))))



Now we can insert a let-statement
// gib_memo' : int * (int code *  int code) 

-> state' -> (state' * int code -> 'ans code) -> 'ans code

let rec gib_memo' (n,(x,y)) s k  = 

match (lookup s n) with 

| Some r -> k (s,r)

| None -> 

(match n with 

| 0 -> k (s,x)

| 1 -> k (s,y)

| _ -> 

gib_memo' (n-2,(x,y)) s (fun (s1,r1) -> 

gib_memo' (n-1,(x,y)) s1 (fun (s2,r2) -> 

.< let z = .~r1 + .~r2

in .~(k (ext s2 n .<z>., .<z>.)) >.)))



Code we generate now
.<fun (x,y) -> .~(gib_memo' (5, (.<x>., .<y>.)) s0

fun (_, b) -> b )>. ;;

Returns .<fun (x, y) ->

let z_3  = x + y in

let z_4  = y + z_3 in

let z_5  = z_3 + z_4 in 

let z_6  = z_4 + z_5

in z_6>.

No more code duplication.  We won!  But…



Is this still like the math?
// gib_memo' : int * (int code *  int code) 

-> state' -> (state' * int code -> 'ans code) -> 'ans code

let rec gib_memo' (n,(x,y)) s k  = 

match (lookup s n) with 

| Some r -> k (s,r)

| None -> 

(match n with 

| 0 -> k (s,x)

| 1 -> k (s,y)

| _ -> 

gib_memo' (n-2,(x,y)) s (fun (s1,r1) -> 

gib_memo' (n-1,(x,y)) s1 (fun (s2,r2) -> 

.< let z = .~r1 + .~r2 

in .~(k (ext s2 n .<z>., .<z>.)) >.)))



Our contribution
let gib_ms f (n, (x, y)) =

match n with

| 0 -> ret x

| 1 -> ret y

| _ -> 

bind (f ((n-2), (x, y))) (fun r1 ->

bind (f ((n-1), (x, y))) (fun r2 ->

ret .<.~r2 + .~r1>.))



Our contribution 
Programmer

– Converts program into monadic form (std)
– Stages this program as usual

One set of monadic combinators
– Encapsulates memoization
– Encapsulates dealing with code duplication

Works for standard DP algorithms
– HMM, knapsack, LCS, matrix mult, OBST
– Generate implementations generally much faster (2-90x) 

than C implementations (bottom-up, matrix based)



Related Work
Moggi 1990, Wadler 1991, many others

Consel and Danvy 1991, Bondorf 1992, others

• Nobody says “CPS helps let-insertion”

Hatcliff and Danvy 1997

Liu and Stoller 2003, Acar et all 2003

Thiemann 2003

Paper discusses several other related works



Summary

Code duplication makes writing any program 
generator (or transformation) challenging

Some duplication problems are easier to deal 
with than others

The difficult cases will come up often

CPS helps a bit.  Monads help a lot!  Paper
– Explains how monads help in more detail

– Reports on experiments to check these claims



Future Work
Past Future 

• Used for generating FFT circuits (EMSOFT 2004, 
ICESS 2004)

• Used for generating implementations of Gaussian 
Elimination (Carette and Kiselyov @ GPCE 2005)

Present Future

• Controlled unfolding
– specialization-free partial evaluation


