

Type System for a Polymorphic
Multi-Stage Programming

Language

Atsushi Igarashi
(Kyoto Univ.)

Joint work with Megumi Kobayashi

MetaOCaml
[Calcagno, Taha, Huang, Leroy; GPCE03]

An extension of OCaml with features for multi-
stage programming (MSP)

(Hygienic) quasi-quotation
Eval (a.k.a. run)
Cross-stage persistence
Strong type system (for a pure fragment)

Type-safe quasiquotation and eval

let c1 = .< 3 * 3 >.;;
val c1 : int code = .< 3 * 3 >.
let f c = .< float_of_int .~c >.;;
val f : int code → float code = <fun>
let c2 = f c1;;
val c2 : float code =
 .< float_of_int (3 * 3)>.
let x = !. c2;;
val x : float = 9.0 I will omit dots and

use “eval” for !.

Cross-Stage Persistence (CSP)

A value created outside of quotations can be
referenced inside (namely, at a later stage)

CSP is limited for variable references in MetaOCaml

let f c = < float_of_int .~c >.;;
val f : int code → float code = <fun>

let r = ref 2;;
let c = <fun x → r := !r + x> in
 (eval c) 4; !r;;
val - : int = 6

Specializing the Power function
let rec pow' n c =
 if n = 0 then <1>
 else < ~c * ~(pow' (n-1) c) >;;

let pow n =
 < fun x → ~(pow' n <x>)>;;

let pow3 = pow 3;;
val - : (int → int) code
 = < fun x → x * x * x * 1 >
(eval pow3) 5;;
val - : int = 125

Specializing a polymorphic function
let rec iter' n f x =
 if n = 1 then <~f ~x>
 else < ~f ~x; ~(iter' (n-1) f x)>;;
val iter' :
 int→(→unit) code→ code→unit code

let iter n =
 < fun f x → ~(iter' n <f> <x>)>;;
val iter :
 int → (( → unit) →  → unit) code

Polymorphism is lost by
specialization

let twice = iter 2;;
val twice : ((_→unit) → _→unit) code
 = <fun f x → f x; f x>

Due to value restriction, polymorphism is lost
_ can be instantiated only once

Polymorphism can be recovered

let twice' =
 < fun f x → ~(iter 2) f x>;;
val twice' : ((→unit) → →unit) code
 = <fun f0 x0 →
 (fun f x → f x; f x) f0 x0>

let twice'' =
 < fun f x → ~(iter' 2 <f> <x>)>;;
val twice'' : ((→unit) → →unit) code
 = <fun f x → f x; f x>

By making RHS a syntactic value (i.e., quotation)

Value Restriction

e1 in let x = e1 in e2 can be given a
polymorphic type, only when e1 is a syntactic
value (e.g., variable, fun, quotation of fun)

In OCaml (and MetaOCaml) “relaxed” value
restriction [Garrigue] is used

However, in MetaOCaml, a syntactic value
can involve computation as in twice'
Is this really safe?

No, not really… [Shan&Kiselyov]

By using cross-stage persistence (CSP), this
“naive” value restriction can be shown to be
unsound!
True value restriction rejects the counter
example (and probably sound)

But would make many useful examples monomorphic
No way to specialize polymorphic functions?

Counterexample by Shan & Kiselyov

f is given a polymorphic type unit→ list
RHS is a function “value”, even though it involves
allocation of a reference to an empty list

let c =
 <let f = fun () →
 ~(let r = ref [] in <r>) in
 f() := [1];
 “foo” :: !(f()) >
val c : string list code = …
eval c;;

Our Work

Type system for MiniML>%

MetaOCaml-like calculus λ>% [Hanada&I.'14]
 + let-polymorphism
 + references
(N.B. The so-called “scope extrusion problem”
is not addressed)

Our Approach

Based on imperative type variables [Tofte]
To prevent “polymorphic references” from being
allocated

Enhancement to take staging into account

The Rest of The Talk

Review of Tofte's type discipline
Applying Tofte's to MetaOCaml
Staged imperative type variables

Problem of naive let-polymorphism

Unsound in the presence of imperative
features

let r = ref [];;
val r :  list ref
r := [1];; (* use as int list ref *)
val - : unit = ()
“foo” :: !r;;
??? (* use as string list ref *)

Tofte's idea
Allocation of a reference involving implicitly
bound type variables leads to unsoundness

let r = .ref ([] :  list) in …

If RHS is a value, type variables are
instantiated by the time refs are allocated

let r = .fun () → ref ([]: list) in
r() := [1]; “foo” :: r();

→ When RHS is not a value, don't abstract
type variables that occurs under ref

Distinguishing applicative and
imperative type variables

Applicative type variables
cannot appear under ref
can be bound/abstracted at any let

Imperative type variables
can appear under ref
can be bound/abstracted only at let with a value
as RHS
can be instantiated only by types w/o applicative

Value restriction = no applicative type vars

Examples revisited

Ill typed, because applicative var. appears under
ref

Ill-typed, because RHS is not a value

let r = ::app.ref ([]: list) in
 r := [1]; “foo” :: !r

let r = ::imp.ref ([]: list) in
 r := [1]; “foo” :: !r

The Rest of The Talk

Review of Tofte's type discipline
Applying Tofte's to MetaOCaml
Staged imperative type variables

Applying Tofte to MetaOCaml:
Specialization of polymorphic code

If no reference types are involved, all lets
can be safely polymorphic

let twice = ::app. iter 2;;
val twice : ((→unit) →  → unit) code
 = <fun f x → f x; f x>
let twice'' = ::app.
 < fun f x -> ~(iter' 2 <f> <x>)>;;
val twice'' : ((→unit) → →unit) code
 = <fun f x → f x; f x>

Applying Tofte to MetaOCaml:
Rejecting the Counterexample

Rejected under true value restriction
RHS of let f = is an abstraction but not a
value!

let c =
 <let f = ::imp.fun () →
 ~(let r = ref ([]: list)
 in <r>) in
 f() := [1];
 “foo” :: !(f()) >.

Slight Variant

Accepted because RHS is now a proper value
(abstraction w/o unquote) and imperative 
can be abstracted

let c =
 <let f =
 ::imp.fun()→ref ([]: list) in
 f() := [1];
 “foo” :: !(f()) >;;

How About This One?

Unfortunately, it is rejected:
 cannot be app, because it appears under ref
 cannot be imp, because the RHS isn't a value

let twice'n'return = ::???.
 <fun f x → ~(iter' 2 <f> <x>); !x>;;
val twice'n'return :
 ((ref → unit) → ref → ) code
 = <fun f x → f x; f x; !x>

The Rest of The Talk

Review of Tofte's type discipline
Applying Tofte's to MetaOCaml
Staged imperative type variables

Observations

Should be safely used polymorphically
because code generation is pure
It seems safe to use  under ref as long as
it is inside quotation

let twice'n'return =
 <fun f x → ~(iter' 2 <f> <x>); !x>;;

Staged Imperative Type Variables

Imperative type var at stage 1 (imp1)
Cannot appear under ref outside quotation or code
type
Can be bound/abstracted at stage-1 func def and
any stage-0 let
Demoted to imp0 if code is evaluated

Imperative type var at stage 0 (imp0)
Can be bound/abstracted at stage-0 value def

Applicative type var (app)
Can be bound/abstracted at any let (but cannot
appear under ref)

twice'n'return revisited

 appears under ref but it's inside quotation

let twice'n'return = ::imp1.
 <fun f (x: ref) →
 ~(iter' 2 <f> <x>); !x>;;
val twice'n'return :
 ((ref → unit) → ref → ) code
 = <fun f x → f x; f x; !x>

Counterexample revisited

 cannot be imp1, because it is used outside
quotation (that is, in the type of r)

let c =
 <let f = ::imp1.fun () →
 ~(let r = ref [] in <r>) in
 f() := [1];
 “foo” :: !(f()) >

Flavor of Formal Bits (1/3)

MiniML>%

based on >% [Hanada&I.'14]
Classifiers to represent how thick a quotation is
Quotation indexed by classifiers: <M>
CSP for any terms % M

Classifier abstraction: .M
Classifier application: M (n)

Eval as derived form: (.<M>)  → M

Type/classifier abstraction restricted at let
References

Empty sequence
(thickness is zero)

Flavor of Formal Bits (2/3)

Imperative type vars are classified (kinded)
by a set of classifiers

 :: imp{1,…,n} means  gets instantiated by the
time 1,…,n are instantiated by 

Judgments:
 ┝ M : T @ 1…n M has type T at stage 1…n

 ┝ T :: imp{1,…,n} T ref can be used at stage
 containing only i

::app ┝  list :: imp{}
::imp{} ┝  list :: imp{}
::imp{} ┝  list :: imp{}

Flavor of Formal Bits (3/3)
 ┝ M : T @ 1…n  ┝ T :: imp{1,…,n}

 ref ┝ M : T ref @ 1…n

::K ┝ y.M : T' @ 1…n

x:  ∀ ∀ K.T' ┝ N : T @ 1…n

K = app or imp{1,...,n}

 let ┝ x = ::K.y.M in N: T @ 1…n

::K ┝ M : T' @ 1…n

x:  ∀ ∀ K.T' ┝ N : T @ 1…n

K = app or imp{,1,...,n}

 let ┝ x = ::K.M in N: T @ 1…n

imp1 can be abstracted
at any stage-0 let

impi can be abstracted
at stage-i fun def

Technical Results So Far

Operational semantics
Scope extrusion raises a run-time exception,
which this type system doesn't care about

Type system
Soundness proof

Summary
Naive value restriction in MetaOCaml is unsafe
Tofte's type discipline for MSP can be adapted

Staged imperative type variables
c.f. Weak polymorphism in SML/NJ

Future work:
Type inference
Investigation of naive value restriction for a
sublanguage where the use of CSP is restricted
Scope extrusion problem

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33

