Type System for a Polymorphic
Multi-Stage Programming
Language

Atsushi Igarashi
(Kyoto Univ.)

Joint work with Megumi Kobayashi

MetaOCaml

[Calcagno, Taha, Huang, Leroy; GPCEQ3]

An extension of OCaml with features for multi-
stage programming (MSP)

° (Hygienic) quasi-quotation

* Eval (a.k.a. run)

* Cross-stage persistence

° Strong type system (for a pure fragment)

Type-safe quasiquotation and eval

¥ let cl = . < 3 * 3 >.;;
val ¢l : int code = .< 3 * 3 >,
¥ let £ c = .< float of int .~c >.;;
val £ : int code - float code = <fun>
¥ let c2 = £ cl1;;
val c2 : float code =

.< float of int (3 * 3)>.
¥ let x ="', c2;;
V'SR ST T will omit dots and

use "eval” for |.

Cross-Stage Persistence (CSP)

° A value created outside of quotations can be
referenced inside (namely, at a later stage)

e CSP is limited for variable references in MetaOCaml

¥ let £ c = < float of int .~c >.;;
val £ : int code - float code = <fun>

let r = ref 2;;

¥ let ¢ = <fun x - r := !lr + x> in
(eval c) 4; 'r;;

val - : int = 6

Specializing the Power function

let rec pow' n c =
if n = 0 then 1>
else < ~¢ * ~(pow' (n-1) c) >;;

let pow n =
< fun x - ~(pow' n <x>)>;;

let pow3 = pow 3;;
val - : (int - 1int) code
=< fun x - x *x *x *1>
(eval pow3) 5;;
val - : int = 125

Specializing a polymorphic function

let rec iter' n £ x =

i1f n = 1 then <~f ~x>

else < ~f ~x; ~(iter' (n-1) £ x)>;;
val iter'’

int- (d-unit) code-& code-unit code

let iter n =

< fun £ x - ~(1ter' n <£> <x>)>;;
val iter :

int - ((@ - unit) - & - unit) code

Polymorphism is lost by
specialization

let twice = iter 2;;

val twice : ((_o-unit) - o—~unit) code
= <fun £ x - £ x; £ x>

° Due to value restriction, polymorphism is lost

° _o can be instantiated only once

Polymorphism can be recovered

° By making RHS a syntactic value (i.e., quotation)
let twice'
< fun £ x - ~(iter 2) £ x>;;

val twice' : ((o~unit) - o—~unit) code
= <fun £f0 x0 -
(fun £ x - £ x; £ x) £f0 x0>

¥ let twice'' =
< fun £ x - ~(iter' 2 <£> x>)>;;

val twice'' : ((a—~unit) - o-unit) code
= <fun f x - £ x; £ x>

Value Restriction

elinlet x = el in e2 can be given a
polymorphic type, only when el is a syntactic
value (e.g., variable, fun, quotation of fun)

e Tn OCaml (and MetaOCaml) "relaxed” value
restriction [Garrigue] is used

* However, in MetaOCaml, a syntactic value
can involve computation as in twice'

° Is this really safe?

No, not really... [Shan&Kiselyov]

° By using cross-stage persistence (CSP), this
"naive" value restriction can be shown to be
unsound!

° True value restriction rejects the counter
example (and probably sound)

* But would make many useful examples monomorphic
* No way to specialize polymorphic functions?

Counterexample by Shan & Kiselyov

let c =
<let £ = fun () -
~(let r = ref [] i1n <r>) 1in
£() := [1];
“foo” :: VY (£()) >
val ¢ : string list code = ..
eval c;;

° £ is given a polymorphic type unit-a list

* RHS is a function "value”, even though it involves
allocation of a reference to an empty list

Our Work

Type system for MiniML™*

* MetaOCaml-like calculus X* [Hanada&I. 14]
+ let-polymorphism
+ references

(N.B. The so-called "scope extrusion problem”
IS not addressed)

Our Approach

° Based on imperative type variables [Tofte]

* To prevent "polymorphic references” from being
allocated

° Enhancement to take staging into account

The Rest of The Talk

° Review of Tofte's type discipline
° Applying Tofte's to MetaOCaml
 Staged imperative type variables

Problem of naive let-polymorphism

° Unsound in the presence of imperative
features

let r = ref [];;
val r : & list ref

r := [1l];; (* use as int list ref *)
val - : unit = ()
¥ “foo” :: 'r;;

7?7 (* use as string list ref *)

Tofte's idea

° Allocation of a reference involving implicitly
bound type variables leads to unsoundness

let r = Aad.ref ([] : o list) in ..

- If RHS is a value, type variables are
instantiated by the time refs are allocated

let r =A0.fun () - ref ([]:0 list) in
r() := [1]; “foo” :: xr();

— When RHS is not a value, don't abstract
type variables that occurs under ref

Distinguishing applicative and
imperative type variables

° Applicative type variables

° cannot appear under ref

* can be bound/abstracted at any let
° Imperative type variables

* can appear under ref

* can be bound/abstracted only at 1et with a value
as RHS

* can be instantiated only by types w/o applicative
* Value restriction = no applicative type vars

Examples revisited

let r = Ao::app.ref ([]:o list) in
r := [1]; “foo” :: Ir

* Tll typed, because applicative var. appears under
ref

let r = Ao: :imp.ref ([]:o list) in
r := [1l]; “foo” :: Ir

* Tll-typed, because RHS is not a value

The Rest of The Talk

° Review of Tofte's type discipline
° Applying Tofte's to MetaOCaml
 Staged imperative type variables

Applying Tofte to MetaOCami:

Specialization of polymorphic code

° If no reference types are involved, all lets
can be safely polymorphic

let twice = AQ::app. iter 2;;
val twice : ((00-~unit) - & - unit) code
= <fun £ x - £ x; £ x>
let twice'' = AQ::app.

< fun £ x -> ~(1ter' 2 <> x>)>;;
val twice'' : ((axd-unit) - o-—unit) code
=<fun f x - £ x; £ x>

Applying Tofte to MetaOCami:

Rejecting the Counterexample

let c =
<let £ = Ad::imp.fun () -
~(let r = ref ([]: 0 list)
in <r>) 1in

£() := [1];
“foo” :: V(£()) >.

° Rejected under true value restriction

e RHS of 1et £ = is an abstraction but not a
value!

Slight Variant

¥ let c =
<let £ =

Ao : :imp.fun()-ref ([]:0o list) in

£() := [1]-;
“foo” :: V(E()) >;;

° Accepted because RHS is now a proper value
(abstraction w/o unguote) and imperative o
can be abstracted

How About This One?

let twice'n'return = AQ::?2?7.
<fun £ x 5 ~(iter' 2 <f> x>),; 'x>;;
val twice'n'return

((x ref - unit) - aref - @) code
= <fun £ x - £ x; £ x; Ix>

Unfortunately, it is rejected:

° o cannot be app, because it appears under ref
e oo cannot be imp, because the RHS isn't a value

The Rest of The Talk

° Review of Tofte's type discipline
° Applying Tofte's to MetaOCaml
° Staged imperative type variables

Observations

let twice'n'return =
<fun £ x - ~(iter' 2 <> <x>); x>;;

Should be safely used polymorphically
because code generation is pure

It seems safe to use a under ref as long as
it is inside quotation

Staged Imperative Type Variables

° Imperative type var at stage 1 (imp1)
* Cannot appear under ref outside quotation or code
Type

* Can be bound/abstracted at stage-1 func def and
any stage-0 let

e Demoted to impO if code is evaluated
° Imperative type var at stage O (imp0)

* Can be bound/abstracted at stage-0 value def
° Applicative type var (app)

* Can be bound/abstracted at any let (but cannot
appear under ref)

twice'n'return revisited

let twice'n'return = AQ::impl.
<fun f (x:0 ref) -
~(i1ter' 2 <f> x>); 1x>;;
val twice'n'return

((dx ref - unit) - aref - @) code
=<fun f x - £ x; £ x; Ix>

° oo appears under ref but it's inside quotation

Counterexample revisited

* o, cannot be imp1l, because it is used outside
quotation (that is, in the type of r)

¥ let c =
<let £ = Ao::impl.fun () -
~(let r = ref [] 1in <r>) in

£() := [1];
“foo” :: V(£()) >

Flavor of Formal Bits (1/3)

= MiniML>"
e based on L”* [Hanada&I. 14]

* Classifiers to represent how thick a quotation is

* Quotation indexed by classifiers: <y M>
e CSP for any terms %y M

e Classifier abstraction: Ay.M (thickness is zero)
e Classifier application: M (y;...y,)
* Eval as derived form: (Ay.<yM>)e > M
e Type/classifier abstraction restricted at let
* References

Empty sequence

Flavor of Formal Bits (2/3)

 Imperative type vars are classified (kinded)
by a set of classifiers

e o imp{y,...,Y,} means o gets instantiated by the
time v,,...,Y,are instantiated by ¢

° Judgments:
e I'-FM:T@Yv,...y, Mhastype T at stage v,...7,

e I' = T :imp{y,,...,Y,} T refcan be used at stage
containing only ¥

e oc::app)/oc list :: Imp{e}
e ou:imp{e} F o list :: imp{y}
e o.imp{y} £~ o list :: imp{e}

Flavor of Formal Bits (3/3)

FEM:T@Y,...v, T FTaximp{y, ...y}
TrefM: Tref @ vy,...v.

Ly, oK FAYM: T @Y,...Y,
| D SAVAA VL A O A N Ve @ R IMp/ can be abstracted
’ . Ll at stage-i fun def

K = app or imp{Y,...,¥,}

I Fletx = AY.Aw:KAYMinN: T@ v,...Y,

Cya:KEM:T@vy,...Y, -y o bt acted
/ ; Im can pe apbsiracle
[x: VYyVYo:KT FN:T@v,...Y, pat any stage-0 let
K = app or imp{y, ¥y, ¥}
[Fletx=Ay.Ac:KMinN: T@ v,...Y,

Technical Results So Far

° Operational semantics

* Scope extrusion raises a run-time exception,
which this type system doesn’t care about

* Type system
° Soundness proof

Summary

e Naive value restriction in MetaOCaml is unsafe

° Tofte's type discipline for MSP can be adapted

* Staged imperative type variables
* c.f. Weak polymorphism in SML/NJ

Future work:
° Type inference

» Investigation of naive value restriction for a
sublanguage where the use of CSP is restricted

° Scope extrusion problem

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33

