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MetaOCaml

[Calcagno, Taha, Huang, Leroy; GPCEQ3]

An extension of OCaml with features for multi-
stage programming (MSP)

° (Hygienic) quasi-quotation

* Eval (a.k.a. run)

* Cross-stage persistence

° Strong type system (for a pure fragment)



Type-safe quasiquotation and eval

¥ let cl = . < 3 * 3 >.;;
val ¢l : int code = .< 3 * 3 >,
¥ let £ c = .< float of int .~c >.;;
val £ : int code - float code = <fun>
¥ let c2 = £ cl1;;
val c2 : float code =

.< float of int (3 * 3)>.
¥ let x ="', c2;;
V'SR ST T will omit dots and

use "eval” for |.



Cross-Stage Persistence (CSP)

° A value created outside of quotations can be
referenced inside (namely, at a later stage)

e CSP is limited for variable references in MetaOCaml

¥ let £ c = < float of int .~c >.;;
val £ : int code - float code = <fun>

# let r = ref 2;;

¥ let ¢ = <fun x - r := !lr + x> in
(eval c) 4; 'r;;

val - : int = 6



Specializing the Power function

# let rec pow' n c =
if n = 0 then 1>
else < ~¢ * ~(pow' (n-1) c) >;;

# let pow n =
< fun x - ~(pow' n <x>)>;;

# let pow3 = pow 3;;
val - : (int - 1int) code
=< fun x - x *x *x *1>
# (eval pow3) 5;;
val - : int = 125



Specializing a polymorphic function

# let rec iter' n £ x =

i1f n = 1 then <~f ~x>

else < ~f ~x; ~(iter' (n-1) £ x)>;;
val iter'’

int- (d-unit) code-& code-unit code

# let iter n =

< fun £ x - ~(1ter' n <£> <x>)>;;
val iter :

int - ((@ - unit) - & - unit) code



Polymorphism is lost by
specialization

# let twice = iter 2;;

val twice : ((_o-unit) - o—~unit) code
= <fun £ x - £ x; £ x>

° Due to value restriction, polymorphism is lost

° _o can be instantiated only once



Polymorphism can be recovered

° By making RHS a syntactic value (i.e., quotation)
# let twice'
< fun £ x - ~(iter 2) £ x>;;

val twice' : ((o~unit) - o—~unit) code
= <fun £f0 x0 -
(fun £ x - £ x; £ x) £f0 x0>

¥ let twice'' =
< fun £ x - ~(iter' 2 <£> x>)>;;

val twice'' : ((a—~unit) - o-unit) code
= <fun f x - £ x; £ x>



Value Restriction

elinlet x = el in e2 can be given a
polymorphic type, only when el is a syntactic
value (e.g., variable, fun, quotation of fun)

e Tn OCaml (and MetaOCaml) "relaxed” value
restriction [Garrigue] is used

* However, in MetaOCaml, a syntactic value
can involve computation as in twice'

° Is this really safe?



No, not really... [Shan&Kiselyov]

° By using cross-stage persistence (CSP), this
"naive" value restriction can be shown to be
unsound!

° True value restriction rejects the counter
example (and probably sound)

* But would make many useful examples monomorphic
* No way to specialize polymorphic functions?



Counterexample by Shan & Kiselyov

# let c =
<let £ = fun () -
~(let r = ref [] i1n <r>) 1in
£() := [1];
“foo” :: VY (£()) >
val ¢ : string list code = ..
# eval c;;

° £ is given a polymorphic type unit-a list

* RHS is a function "value”, even though it involves
allocation of a reference to an empty list



Our Work

Type system for MiniML™*

* MetaOCaml-like calculus X* [Hanada&I. 14]
+ let-polymorphism
+ references

(N.B. The so-called "scope extrusion problem”
IS not addressed)



Our Approach

° Based on imperative type variables [Tofte]

* To prevent "polymorphic references” from being
allocated

° Enhancement to take staging into account



The Rest of The Talk

° Review of Tofte's type discipline
° Applying Tofte's to MetaOCaml
 Staged imperative type variables



Problem of naive let-polymorphism

° Unsound in the presence of imperative
features

# let r = ref [];;
val r : & list ref

# r := [1l];; (* use as int list ref *)
val - : unit = ()
¥ “foo” :: 'r;;

7?7 (* use as string list ref *)



Tofte's idea

° Allocation of a reference involving implicitly
bound type variables leads to unsoundness

let r = Aad.ref ([] : o list) in ..

- If RHS is a value, type variables are
instantiated by the time refs are allocated

let r =A0.fun () - ref ([]:0 list) in
r() := [1]; “foo” :: xr();

— When RHS is not a value, don't abstract
type variables that occurs under ref



Distinguishing applicative and
imperative type variables

° Applicative type variables

° cannot appear under ref

* can be bound/abstracted at any let
° Imperative type variables

* can appear under ref

* can be bound/abstracted only at 1et with a value
as RHS

* can be instantiated only by types w/o applicative
* Value restriction = no applicative type vars



Examples revisited

# let r = Ao::app.ref ([]:o list) in
r := [1]; “foo” :: Ir

* Tll typed, because applicative var. appears under
ref

# let r = Ao: :imp.ref ([]:o list) in
r := [1l]; “foo” :: Ir

* Tll-typed, because RHS is not a value



The Rest of The Talk

° Review of Tofte's type discipline
° Applying Tofte's to MetaOCaml
 Staged imperative type variables



Applying Tofte to MetaOCami:

Specialization of polymorphic code

° If no reference types are involved, all lets
can be safely polymorphic

# let twice = AQ::app. iter 2;;
val twice : ((00-~unit) - & - unit) code
= <fun £ x - £ x; £ x>
# let twice'' = AQ::app.

< fun £ x -> ~(1ter' 2 <> x>)>;;
val twice'' : ((axd-unit) - o-—unit) code
=<fun f x - £ x; £ x>



Applying Tofte to MetaOCami:

Rejecting the Counterexample

# let c =
<let £ = Ad::imp.fun () -
~(let r = ref ([]: 0 list)
in <r>) 1in

£() := [1];
“foo” :: V(£()) >.

° Rejected under true value restriction

e RHS of 1et £ = is an abstraction but not a
value!



Slight Variant

¥ let c =
<let £ =

Ao : :imp.fun()-ref ([]:0o list) in

£() := [1]-;
“foo” :: V(E()) >;;

° Accepted because RHS is now a proper value
(abstraction w/o unguote) and imperative o
can be abstracted



How About This One?

# let twice'n'return = AQ::?2?7.
<fun £ x 5 ~(iter' 2 <f> x>),; 'x>;;
val twice'n'return

((x ref - unit) - aref - @) code
= <fun £ x - £ x; £ x; Ix>

Unfortunately, it is rejected:

° o cannot be app, because it appears under ref
e oo cannot be imp, because the RHS isn't a value



The Rest of The Talk

° Review of Tofte's type discipline
° Applying Tofte's to MetaOCaml
° Staged imperative type variables



Observations

# let twice'n'return =
<fun £ x - ~(iter' 2 <> <x>); x>;;

Should be safely used polymorphically
because code generation is pure

It seems safe to use a under ref as long as
it is inside quotation



Staged Imperative Type Variables

° Imperative type var at stage 1 (imp1)
* Cannot appear under ref outside quotation or code
Type

* Can be bound/abstracted at stage-1 func def and
any stage-0 let

e Demoted to impO if code is evaluated
° Imperative type var at stage O (imp0)

* Can be bound/abstracted at stage-0 value def
° Applicative type var (app)

* Can be bound/abstracted at any let (but cannot
appear under ref)



twice'n'return revisited

# let twice'n'return = AQ::impl.
<fun f (x:0 ref) -
~(i1ter' 2 <f> x>); 1x>;;
val twice'n'return

((dx ref - unit) - aref - @) code
=<fun f x - £ x; £ x; Ix>

° oo appears under ref but it's inside quotation



Counterexample revisited

* o, cannot be imp1l, because it is used outside
quotation (that is, in the type of r)

¥ let c =
<let £ = Ao::impl.fun () -
~(let r = ref [] 1in <r>) in

£() := [1];
“foo” :: V(£()) >



Flavor of Formal Bits (1/3)

= MiniML>"
e based on L”* [Hanada&I. 14]

* Classifiers to represent how thick a quotation is

* Quotation indexed by classifiers: <y M>
e CSP for any terms %y M

e Classifier abstraction: Ay.M (thickness is zero)
e Classifier application: M (y;...y,)
* Eval as derived form: (Ay.<yM>)e > M
e Type/classifier abstraction restricted at let
* References

Empty sequence




Flavor of Formal Bits (2/3)

 Imperative type vars are classified (kinded)
by a set of classifiers

e o imp{y,...,Y,} means o gets instantiated by the
time v,,...,Y,are instantiated by ¢

° Judgments:
e I'-FM:T@Yv,...y, Mhastype T at stage v,...7,

e I' = T :imp{y,,...,Y,} T refcan be used at stage
containing only ¥

e oc::app)/oc list :: Imp{e}
e ou:imp{e} F o list :: imp{y}
e o.imp{y} £~ o list :: imp{e}



Flavor of Formal Bits (3/3)

FEM:T@Y,...v, T FTaximp{y, ...y}
TrefM: Tref @ vy,...v.

Ly, oK FAYM: T @Y,...Y,
| D SAVAA VL A O A N Ve @ R IMp/ can be abstracted
’ . Ll at stage-i fun def

K = app or imp{Y,...,¥,}

I Fletx = AY.Aw:KAYMinN: T@ v,...Y,

Cya:KEM:T@vy,...Y, -y o bt acted
/ ; Im can pe apbsiracle
[x: VYyVYo:KT FN:T@v,...Y, pat any stage-0 let
K = app or imp{y, ¥y, ¥}
[ Fletx=Ay.Ac:KMinN: T@ v,...Y,




Technical Results So Far

° Operational semantics

* Scope extrusion raises a run-time exception,
which this type system doesn’t care about

* Type system
° Soundness proof



Summary

e Naive value restriction in MetaOCaml is unsafe

° Tofte's type discipline for MSP can be adapted

* Staged imperative type variables
* c.f. Weak polymorphism in SML/NJ

Future work:
° Type inference

» Investigation of naive value restriction for a
sublanguage where the use of CSP is restricted

° Scope extrusion problem
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