

Tristan Aubrey-Jones

Bernd Fischer

Synthesizing MPI Implementations

from Functional Data-Parallel

Programs

Inferring data distributions using types

People need to program

distributed memory architectures:
GPUs

Future many-core architectures?

Server farms/compute clusters

Big Data/HPC; MapReduce/HPF; Ethernet/Infiniband

Graphics/GPGPU

CUDA/OpenCL

Memory levels:

thread-local,

block-shared,

device-global.

Our Aim

To automatically generate distributed-memory

cluster implementations (C++/MPI).

 We want this not just for arrays (i.e., other collection types as

well as disk backed collections).

Many distributions possible

Single threaded Parallel shared-memory Distributed memory

Approach

• We define Flocc, a data-parallel DSL, where parallelism is

expressed via skeletons or combinator functions (HOFs).

• We use distributed data layout (DDL) types to carry data

distribution information, and type inference to drive code

generation.

• We develop a code generator that searches for well

performing implementations, and generates C++/MPI

implementations.

Approach

eqJoin

map

groupRed

eqJoin1

map2

groupRed1

eqJoin2

map1

groupRed1

eqJoin3

map1

groupRed1

Input program Plan search Back-end

or

or

⁞

MPI &

C++

MPI &

C++

MPI &

C++

eqJoin4

map2

groupRed1
or MPI &

C++

Abstract

combinators

Plan synthesis

eqJoin1 :: (T1,T2) -> T3

map2 :: T3 -> T4

groupRed1 :: T4 -> T5

eqJoin2 :: (T6,T7) -> T8

map1 :: T8 -> T9

groupRed1 :: T9 -> T10

eqJoin3 :: (T11,T12) -> T13

map1 ; redist1 :: …

groupRed1 :: T14 -> T15

eqJoin4 (mirr, repartition)…

map2 :: T18 -> T19

groupRed1 :: T19 -> T20

Distributed-

memory

combinators

DDL types
Generated

code

Performance

feedback

Redistributions

What’s new?

Last++ time:

• Functional DSL with

data-parallel combinators

• Data distributions for

distributed-memory

implementations using

dependent types

• Distributions for maps,

arrays, and lists

• Synthesis of data

distributions using type

inference algorithm

Since then:

• MPI/C++ code generation

• Performance-feedback-

based data distribution

search

• Automatic redistribution

insertion

• Local data layouts

• Arrays with ghosting

• Type inference with

E-unification

• (Thesis submitted)

RE-CAP

What we presented last time.

A Distributed Map type

The DMap type extends the basic Map k v type to symbolically

describe how the Map should be distributed on the cluster

• Key and value types t1 and t2

• Partition function f: (t1,t2) → N

– takes key-value pairs to node coordinates

• Partition dimension identifier d1

– specifies which nodes the coordinates map onto

• Mirror dimension identifier d2

– specifies which nodes to mirror the partitions over

Also works for Arrays (DArr) and Lists (DList)

dependent types!

Distribution types for group reduces

• Π binds concrete term in AST

• creates a reference to

argument’s AST when

instantiated

• must match concrete reference

when unifying (rigid)

• used to specify that a collection

is distributed using a specific

key projection function

Distribution types for group reduces

• Input must be partitioned using the groupReduce’s key

projection function f

• Result keys are already co-located

Node1

Node2

Node3

In Out Local group reduce

No inter-node

communication

necessary

(but constrains input

distribution)

Distribution types for joins

Left and right input partitioned and mirrored on orthogonal dims

• No inter-node

communication

• Output can be

partitioned by any f

• Can be more efficient

than mirroring whole

input

0 1

0 A0 B0 A1 B0

1 A0 B1 A1 B1

d2

d1

Node (0,0)

Node (0,1)

Node (1,0)

In Local equi-joins

Node (1,1)

Out

Deriving distribution plans

let R = eqJoin (\((ai,aj),_) -> aj,

 \((bi,bj),_) -> bi,

 A, B) in

groupReduce (\(((ai,aj),(bi,bj)),_) -> (ai,bj),

 \(_,(av,bv)) -> mul (av,bv), add, R)

eqJoin1 / eqJoin2 / eqJoin3

groupReduce1 / groupReduce 2

• Different distributed implementations of each combinator

• Enumerate different choices of combinator implementations

• Each combinator implementation has a DDL type

• Use type inference to check if a set of choices is sound and

infer data distributions

• Backend templates for each combinator implementation

Hidden from user Hidden from user

Distributed matrix multiplication - #1

A : DMap (Int,Int) Float \((ai,aj),_) → ai d1 (d2,m)

B : DMap (Int,Int) Float \((bi,bj),_) → bj d2 (d1,m)

R : DMap ((Int,Int),(Int,Int)) (Float,Float)

 \(((ai,aj),(bi,bj)),_) → (ai,bj) (d1,d2) m

C : DMap (Int,Int) Float fst (d1,d2) m

A: Partitioned by row along

d1, mirrored along d2

B: Partitioned by column along B: Partitioned by column along

d2, mirrored along d1

C: Partitioned by (row, column) along (d1, d2)

Must partition and mirror A and B at beginning of computation.

let R = eqJoin (\((ai,aj),_) -> aj,

 \((bi,bj),_) -> bi,

 A, B) in

groupReduce (\(((ai,aj),(bi,bj)),_) -> (ai,bj),

 \(_,(av,bv)) -> mul (av,bv), add, R)

Distributed matrix multiplication - #1

A : DMap (Int,Int) Float \((ai,aj),_) → ai d1 (d2,m)

B : DMap (Int,Int) Float \((bi,bj),_) → bj d2 (d1,m)

R : DMap ((Int,Int),(Int,Int)) (Float,Float)

 \(((ai,aj),(bi,bj)),_) → (ai,bj) (d1,d2) m

C : DMap (Int,Int) Float fst (d1,d2) m

A: Partitioned by row along

d1, mirrored along d2

B: Partitioned by column along B: Partitioned by column along

d2, mirrored along d1

C: Partitioned by (row, column) along (d1, d2)

Must partition and mirror A and B at beginning of computation.

let R = eqJoin (\((ai,aj),_) -> aj,

 \((bi,bj),_) -> bi,

 A, B) in

groupReduce (\(((ai,aj),(bi,bj)),_) -> (ai,bj),

 \(_,(av,bv)) -> mul (av,bv), add, R)

Must partition and mirror A and B at beginning of computation.

Distributed matrix multiplication - #1

A: Partitioned by row along

d1, mirrored along d2

B: Partitioned by column along B: Partitioned by column along

d2, mirrored along d1

C: Partitioned by (row, column) along (d1, d2)

A common solution. A common solution.

eqJoin3 groupReduce2

=

R(1,1) R(1,2) R(1,3)

R(2,1) R(2,2) R(2,3)

R(3,1) R(3,2) R(3,3)

A1

A2

A3

B1 B2 B3

=

C(1,1) C(1,2) C(1,3)

C(2,1) C(2,2) C(2,3)

C(3,1) C(3,2) C(3,3)

d1

d2 (3-by-3 = 9nodes)

Distributed matrix multiplication - #2

A: Partitioned by col along d A: Partitioned by col along d B: Partitioned by row along d B: Partitioned by row along d

(aligned with A)

C: Partitioned by (row, column) along d

Must exchange R during groupReduce1.

RECENT WORK

What’s new since last time.

Since last time…

• Local data layouts

• Distributed arrays with ghosting

• Automatic redistribution insertion

• E-unification in type inference

• MPI/C++ code generation

• Performance-feedback-based data distribution search

• Proof of concept (~25k Haskell loc)

Local data layouts

• Extra DDL type parameters for local layouts

– Choice of data structure (or storage mode)

 Sorted std::vector, hash-map, tree-map, value-stream etc…

– Order of elements or key indexed by

 Local layout function similar to partition function

Extended array distributions

• Supports

– index offsets, axis-reversal (all HPF alignments)

– cyclic, blocked, and block-cyclic distributions (all HPF dists)

– ghosted regions/fringes

• Index transformer functions in DDL types

– Take and return tuples of integer array indices

 Block-sizes

 Index directions

 Index offsets

 Index ghosted fringe sizes (left and right)

• Distribution for Jacobi 1D

– DArr … bs dir id id (+1) (+1) -> DArr … bs dir id id id

• Relies on E-unification (later…)

Automatic redistribution insertion

• Data re-distribution and re-layout functions are type casts.

• For invalid Flocc plans (i.e., that don’t type check) insert just

enough redistributions (or re-layouts) to make type check.

• Means can synthesize a valid plan for any choice of

combinator implementations.

• Finds implementations that benefit from redistributing data

so more efficient combinator implementations can be used.

E-unification

• Adding equational theories for projection, permutation, and

index transformation functions to DDL type inference

• Use E-prover and “question” conjectures to return values for

existentially qualified variables

• Allows improved array distributions and more flexible DDL

types to be supported

• (Not integrated with current prototype)

E-unification: projection functions

E-unification: indexing functions

E-unification: permutation functions

Code generation

• Generates C++ and MPI

from plans (i.e., Flocc

programs with concrete

combinator implementations

and inferred DDL types)

• Transforms to DFG and

uses expression templates

to generate code.

• Currently supports map-

and list-based combinator

templates.

• Uses “stream” local storage

mode to splice multiple

consumers into a

producer’s loop body.

Code generation

Performance comparable with hand-coded versions:

• PLINQ comparisons run on quad-core (Intel Xeon

W3520/2.67GHz) x64 desktop with 12GB RAM.

• C++/MPI comparisons run on Iridis3&4: a 3rd gen cluster with

~1000 Westmere compute nodes, each with two 6-core

CPUs and 22GB RAM, over an InfiniBand network.

Speedups compared to sequential, averaged over

1,2,3,4,8,9,16,32 nodes.

http://cmg.soton.ac.uk/iridis

Performance-feedback-based search

• Tried different search

algorithms to explore candidate

implementations

• For each candidate we

automatically insert

redistributions to make it

type check

• We evaluate each candidate

by code generating,

compiling, and running it on

some test data

• Generates C++ using MPI

Performance-feedback-based search

• Tried 946 different combinations of search heuristics

applied to 4 map-based example programs

• Heuristics composed of

– Search algorithms

 Genetic searches (e.g., with/without crossover)

 Depth/first exhaustive

 Greedy

– Termination conditions

– Runtime pruning

• Found

– Genetic-searches successfully reduce search time

– Fixed budget termination best

– Fixed budget runtime pruning best

– Need to enumerate different redistribution insertion variants

Benefits

• Multiple distributed collections:

Maps, Arrays, Lists...

• Generates distributed

algorithms fully automatically

• Performance feedback more

accurate/flexible than cost

metrics

• Finds algorithms including

redistributions

• Synthesizes local layouts

• Can support in-memory and

disk backed collections (e.g.

for Big Data)

Limitations

• Current implementation

mainly has list and map

combinator backend

templates

• Current implementation’s

redistribution insertion

algorithm is slow

The Pros and Cons…

Future work

• Extend prototype implementation.

• Array combinator backend templates

• Faster redistribution insertion

• Integrate equational theories with implementations.

• Support more distributed memory architectures (GPUs).

• Retrofit into an existing functional language.

• Similar type inference for imperative languages?

• (pass PhD viva)

QUESTIONS?

