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Synthesizing MPI Implementations 

from Functional Data-Parallel 

Programs 
 

Inferring data distributions using types 



People need to program  

distributed memory architectures: 
GPUs 

Future many-core architectures? 

Server farms/compute clusters 

Big Data/HPC; MapReduce/HPF; Ethernet/Infiniband 

Graphics/GPGPU 

CUDA/OpenCL 

Memory levels: 

thread-local,  

block-shared,  

device-global. 



Our Aim 

To automatically generate distributed-memory  

cluster implementations (C++/MPI). 

 

 

 

 

 

 

 
 

 We want this not just for arrays (i.e., other collection types as 

well as disk backed collections). 

 

Many distributions possible 

Single threaded Parallel shared-memory Distributed memory 



Approach 

• We define Flocc, a data-parallel DSL, where parallelism is 

expressed via skeletons or combinator functions (HOFs). 

• We use distributed data layout (DDL) types to carry data 

distribution information, and type inference to drive code 

generation. 

• We develop a code generator that searches for well 

performing implementations, and generates C++/MPI 

implementations. 
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What’s new? 

Last++ time: 

• Functional DSL with  

data-parallel combinators 

• Data distributions for 

distributed-memory 

implementations using 

dependent types 

• Distributions for maps, 

arrays, and lists 

• Synthesis of data 

distributions using type 

inference algorithm 

 

Since then: 

• MPI/C++ code generation 

• Performance-feedback-

based data distribution 

search 

• Automatic redistribution 

insertion 

• Local data layouts 

• Arrays with ghosting 

• Type inference with 

E-unification  

• (Thesis submitted) 



RE-CAP 

What we presented last time. 



A Distributed Map type 

The DMap type extends the basic Map k v type to symbolically 

describe how the Map should be distributed on the cluster 
 

 
 

• Key and value types t1 and t2 

• Partition function f: (t1,t2) → N 

– takes key-value pairs to node coordinates 

• Partition dimension identifier d1 

– specifies which nodes the coordinates map onto 

• Mirror dimension identifier d2 

– specifies which nodes to mirror the partitions over 
 

Also works for Arrays (DArr) and Lists (DList) 

dependent types! 



Distribution types for group reduces 

 

 

 

 
• Π binds concrete term in AST 

• creates a reference to 

argument’s AST when 

instantiated 

• must match concrete reference 

when unifying (rigid) 

• used to specify that a collection 

is distributed using a specific 

key projection function 



Distribution types for group reduces 

 

 

 

 

• Input must be partitioned using the groupReduce’s key 

projection function f 

• Result keys are already co-located 

Node1 

Node2 

Node3 

In Out Local group reduce 

No inter-node 

communication  

necessary 

(but constrains input 

distribution) 



Distribution types for joins 

 

 

 

 

 

Left and right input partitioned and mirrored on orthogonal dims 

• No inter-node 

communication 

• Output can be 

partitioned by any f 

• Can be more efficient 

than mirroring whole 

input 

0 1 

0 A0  B0 A1  B0 

1 A0  B1 A1  B1 

d2 

d1 

Node (0,0) 

Node (0,1) 

Node (1,0) 

In    Local equi-joins 
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Out 



Deriving distribution plans 

let R = eqJoin (\((ai,aj),_) -> aj,  

                \((bi,bj),_) -> bi,  

                A, B) in  

groupReduce (\(((ai,aj),(bi,bj)),_) -> (ai,bj),  

             \(_,(av,bv)) -> mul (av,bv), add, R) 

eqJoin1 / eqJoin2 / eqJoin3 

groupReduce1 / groupReduce 2 

• Different distributed implementations of each combinator 

• Enumerate different choices of combinator implementations 

• Each combinator implementation has a DDL type 

• Use type inference to check if a set of choices is sound and 

infer data distributions 

• Backend templates for each combinator implementation 

Hidden from user Hidden from user 



Distributed matrix multiplication - #1 

A : DMap (Int,Int) Float  \((ai,aj),_) → ai d1 (d2,m) 

B : DMap (Int,Int) Float  \((bi,bj),_) → bj d2 (d1,m) 

R : DMap ((Int,Int),(Int,Int)) (Float,Float)  

                \(((ai,aj),(bi,bj)),_) → (ai,bj) (d1,d2) m 

C : DMap (Int,Int) Float  fst (d1,d2) m  

A: Partitioned by row along 

d1, mirrored along d2 

B: Partitioned by column along B: Partitioned by column along 

d2, mirrored along d1 

C: Partitioned by (row, column) along (d1, d2) 

Must partition and mirror A and B at beginning of computation. 

let R = eqJoin (\((ai,aj),_) -> aj,  

                \((bi,bj),_) -> bi,  

                A, B) in  

groupReduce (\(((ai,aj),(bi,bj)),_) -> (ai,bj),  

             \(_,(av,bv)) -> mul (av,bv), add, R) 
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d2, mirrored along d1 
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Must partition and mirror A and B at beginning of computation. 

Distributed matrix multiplication - #1 

A: Partitioned by row along 

d1, mirrored along d2 

B: Partitioned by column along B: Partitioned by column along 

d2, mirrored along d1 

C: Partitioned by (row, column) along (d1, d2) 

A common solution. A common solution. 

eqJoin3 groupReduce2 

 

= 

R(1,1) R(1,2) R(1,3) 

R(2,1) R(2,2) R(2,3) 

R(3,1) R(3,2) R(3,3) 
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A2 
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B1 B2 B3 

= 

C(1,1) C(1,2) C(1,3) 

C(2,1) C(2,2) C(2,3) 

C(3,1) C(3,2) C(3,3) 

d1 

d2 (3-by-3 = 9nodes) 



Distributed matrix multiplication - #2 

A: Partitioned by col along d A: Partitioned by col along d B: Partitioned by row along d B: Partitioned by row along d 

(aligned with A) 

C: Partitioned by (row, column) along d 

Must exchange R during groupReduce1. 



RECENT WORK 

What’s new since last time. 



Since last time… 

• Local data layouts 

• Distributed arrays with ghosting 

• Automatic redistribution insertion 

• E-unification in type inference 

• MPI/C++ code generation 

• Performance-feedback-based data distribution search 

• Proof of concept (~25k Haskell loc) 



Local data layouts 

• Extra DDL type parameters for local layouts 

– Choice of data structure (or storage mode) 

 Sorted std::vector, hash-map, tree-map, value-stream etc… 

– Order of elements or key indexed by 

 Local layout function similar to partition function 



Extended array distributions 

• Supports  

– index offsets, axis-reversal (all HPF alignments) 

– cyclic, blocked, and block-cyclic distributions (all HPF dists) 

– ghosted regions/fringes 

• Index transformer functions in DDL types 

– Take and return tuples of integer array indices 

 Block-sizes 

 Index directions 

 Index offsets 

 Index ghosted fringe sizes (left and right) 

• Distribution for Jacobi 1D 

– DArr … bs dir id id (+1) (+1) -> DArr … bs dir id id id 

• Relies on E-unification (later…) 

 



Automatic redistribution insertion 

• Data re-distribution and re-layout functions are type casts. 

• For invalid Flocc plans (i.e., that don’t type check) insert just 

enough redistributions (or re-layouts) to make type check. 

• Means can synthesize a valid plan for any choice of 

combinator implementations. 

• Finds implementations that benefit from redistributing data 

so more efficient combinator implementations can be used. 



E-unification 

• Adding equational theories for projection, permutation, and 

index transformation functions to DDL type inference 

• Use E-prover and “question” conjectures to return values for 

existentially qualified variables 

• Allows improved array distributions and more flexible DDL 

types to be supported 

• (Not integrated with current prototype) 



E-unification: projection functions 



E-unification: indexing functions 



E-unification: permutation functions 



Code generation 

• Generates C++ and MPI 

from plans (i.e., Flocc 

programs with concrete 

combinator implementations 

and inferred DDL types) 

• Transforms to DFG and 

uses expression templates 

to generate code. 

• Currently supports map- 

and list-based combinator 

templates. 

• Uses “stream” local storage 

mode to splice multiple 

consumers into a 

producer’s loop body. 



Code generation  

Performance comparable with hand-coded versions: 

 

 

 

 

 

 

• PLINQ comparisons run on quad-core (Intel Xeon 

W3520/2.67GHz) x64 desktop with 12GB RAM. 

• C++/MPI comparisons run on Iridis3&4: a 3rd gen cluster with 

~1000 Westmere compute nodes, each with two 6-core 

CPUs and 22GB RAM, over an InfiniBand network. 

Speedups compared to sequential, averaged over 

1,2,3,4,8,9,16,32 nodes. 

 

http://cmg.soton.ac.uk/iridis


Performance-feedback-based search 

• Tried different search 

algorithms to explore candidate 

implementations 

• For each candidate we 

automatically insert 

redistributions to make it 

type check 

• We evaluate each candidate 

by code generating,  

compiling, and running it on 

some test data 

• Generates C++ using MPI 

 



Performance-feedback-based search 

• Tried 946 different combinations of search heuristics 

applied to 4 map-based example programs 

• Heuristics composed of 

– Search algorithms 

 Genetic searches (e.g., with/without crossover) 

 Depth/first exhaustive 

 Greedy 

– Termination conditions 

– Runtime pruning 

• Found 

– Genetic-searches successfully reduce search time 

– Fixed budget termination best 

– Fixed budget runtime pruning best 

– Need to enumerate different redistribution insertion variants 

 



Benefits 

• Multiple distributed collections: 

Maps, Arrays, Lists... 

• Generates distributed 

algorithms fully automatically 

• Performance feedback more 

accurate/flexible than cost 

metrics 

• Finds algorithms including 

redistributions 

• Synthesizes local layouts 

• Can support in-memory and 

disk backed collections (e.g. 

for Big Data) 

 

Limitations 

• Current implementation 

mainly has list and map 

combinator backend 

templates 

• Current implementation’s 

redistribution insertion 

algorithm is slow 

The Pros and Cons… 



Future work 

• Extend prototype implementation. 

• Array combinator backend templates 

• Faster redistribution insertion 

• Integrate equational theories with implementations. 

• Support more distributed memory architectures (GPUs). 

• Retrofit into an existing functional language. 

• Similar type inference for imperative languages? 

• (pass PhD viva) 



QUESTIONS? 


