
Tradeoffs in Metaprogramming

Todd Veldhuizen
Open Systems Laboratory

Indiana University Bloomington

January 26, 2006



PEPM 2006 January 26, 2006

Two traditions of generics

• Safe (but restricted expressiveness)

? Alphard, CLU, ML, Haskell, Java, · · ·
? A parade of language features to recover expressiveness: parametric

polymorphism, F-bounded polymorphism, type classes, typecase, ...

• Unsafe (but very expressive)

? EL1 [Wegbreit(1974), Holloway(1971)] — arbitrary expressions in type
position, compiler had built-in partial evaluator for these.

? C++: traits (typecase), template metaprograms
? A parade of language features to increase safety: signatures, concepts

Can we have safe and expressive at the same time?



PEPM 2006 January 26, 2006

Metalanguages

A metalanguage is a special-purpose language for generating or
transforming programs.

Stretch the definition to encompass languages for:

• Metaprogramming: YACC, TXL, Stratego, ...

• Code generation: SafeGen, MetaML, C++ Templates, ...

• Abstraction: Macros, generics, class definition syntax, ...
(A programming language is a pastiche of metalanguages.)



PEPM 2006 January 26, 2006

Metalanguages

(a) When is it possible to design metalanguages that...

• guarantee well-formedness?

• guarantee type safety?

• preserve semantics of the object language?

• always terminate?

and, (b) can we achieve the above without sacrificing expressive power?



PEPM 2006 January 26, 2006

You cannot have it both ways

Can I ...

1. Make C++ templates always halt without sacrificing expressive power?

2. Put a type system on JavaFront so that it only allows semantics-
preserving transformations, but without sacrificing expressive power?

3. Design a metalanguage for specifying optimizations that permits any
transformation that can be done in polynomial time, without making
some transformations ridiculously hard to express?

Answer key: (1) No. (2) No. (3) No.



PEPM 2006 January 26, 2006

Tradeoffs

In designing a metalanguage, one must trade off various facets:

• Expressive power (the class of program behaviours that can be expressed)

• Safety properties

• Succinctness (do trivial metaprograms require vast amounts of code to
express?)

• Decidable properties (what you can verify), computational complexity,
etc. etc.



PEPM 2006 January 26, 2006

Why do we need special metalanguages?

In a universal language (Turing-complete), nontrivial properties are
undecidable (Rice’s theorem).

Cannot write a procedure that will decide whether a metaprogram

• emits only well-formed or typeable outputs;

• preserves semantics;

• terminates;

• runs in a given time or space bound (e.g., PTIME).



PEPM 2006 January 26, 2006

Capture

But sometimes we can find a programming language that “captures” a
property.

Example. This is a highly undecidable property: (strict Σ0
2):

Fin ≡ Programs that terminate for at most a finite number of inputs.

Undecidable ⇒ you can’t write a procedure that decides whether a Java
program satisfies the property.



PEPM 2006 January 26, 2006

Capture

But we can “capture” the property with a restricted language: only allow
programs of the form:

f(x) =



c1 when x = x1

c2 when x = x2

... ...

cn when x = xn

↑ otherwise

Every program in this sublanguage has the property Fin;
every behaviour in Fin has a representative in this sublanguage.



PEPM 2006 January 26, 2006

Capture

Say a restricted metalanguage captures a property ψ when:

1. Every program in the restricted language satisfies ψ;

2. Every program (in a general-purpose language) that has the property ψ
is equivalent to some program in the restricted language.



PEPM 2006 January 26, 2006

Property

ff

ff
CC��

ψ

Lψ

p′

p

Universal language'

&

$

%



PEPM 2006 January 26, 2006

Metalanguages capturing properties

When can we find metalanguages capturing useful properties
(well-formedness, typeable, semantics-preserving, ...)?

Computability theory is good at answering such questions.



PEPM 2006 January 26, 2006

The Arithmetical Hierarchy

Introduced by Kleene [Kleene(1950)] to classify noncomputable sets.

Σ0
3

NNNNNNNNNN
...

rrrrrrrrrr

∆0
3

pppppppppp

LLLLLLLL

Σ0
2

NNNNNNNNNN
Π0

2

rrrrrrrr

∆0
2

pppppppppp

LLLLLLLL

c.e. Σ0
1

NNNNNNNNNN
Π0

1

rrrrrrrr
co-c.e.

∆0
1 decidable



PEPM 2006 January 26, 2006

Class ∆0
1

...
HH

HH
HH

H
...

vv
vv

vv
v

∆0
3

xxx
xx FFF

FF

Σ0
2

FFF
FF

Π0
2

xxx
xx

∆0
2

xxx
xx FFF

FF

Σ0
1

@@

Π0
1

~~

∆0
1

Decidable sets.

Rice’s theorem: there are no nontrivial program
properties in this class.



PEPM 2006 January 26, 2006

Class Σ0
1

...
HH

HH
HH

H
...

{{
{{

∆0
3

xxx
xx AA

Σ0
2

FFF
FF

Π0
2

}}

∆0
2

~~
;;

;;
;

Σ0
1

@@

Π0
1

��
��

�

∆0
1

Computably enumerable (c.e.) sets (aka r.e.)
Sets with effective proof calculi
Sets with an effective inductive definition
Sets with a finite axiomatization

Properties living here: (not very interesting ones)
“Metaprogram halts for at least one input.”



PEPM 2006 January 26, 2006

Class Π0
1

...
CC

CC
...

vv
vv

vv
v

∆0
3

}} FFF
FF

Σ0
2

AA

Π0
2

xxx
xx

∆0
2

��
��

� @@

Σ0
1

::
::

:

Π0
1

~~

∆0
1

Co-Computably enumerable (co-c.e.) sets (aka
r.e.)
Sets with an effective coinductive definition

Properties living here:
Runtime manageable properties (e.g., dynamic
type safety).
Partial correctness properties: “If it halts, the
metaprogram produces a well-formed/typeable
instance.”



PEPM 2006 January 26, 2006

Class Σ0
2

...
HH

HH
HH

H
...

{{
{{

∆0
3

~~
;;

;;
;

Σ0
2

@@

Π0
2

��
��

�

∆0
2

xxx
xx AA

Σ0
1

FFF
FF

Π0
1

}}

∆0
1

Sets that are c.e. relative to a Π0
1 oracle

Computational complexity classes live here:
“Metaprogram runs in O(n2) time.”
Fin is in this class.

Independence issues arise: e.g., there are
programs whose running time is independent
of the usual axioms of set theory
[Hartmanis and Hopcroft(1976)].



PEPM 2006 January 26, 2006

Class Π0
2

...
CC

CC
...

vv
vv

vv
v

∆0
3

��
��

� @@

Σ0
2

::
::

:

Π0
2

~~

∆0
2

}} FFF
FF

Σ0
1

AA

Π0
1

xxx
xx

∆0
1

Sets that are co-c.e. relative to a Σ0
1 oracle

Properties living here:
“Metaprogram always halts and produces a well-
formed/type-safe instance.”
“Metaprogram performs only semantics-preserving
transformations.”



PEPM 2006 January 26, 2006

Succinctness

Sometimes when we translate programs into a restricted metalanguage,
the size explodes. (e.g., DNF for boolean formulas: exponential blowup)

Sometimes this explosion in program length cannot be bounded by any
computable function:

• e.g. restricted languages that are total (always terminate)

• Noncomputable blowup ⇒ there are programs that require 10100 times
more code to express in the restricted language.

• Whether we care is another matter (maybe they are not interesting
programs).



PEPM 2006 January 26, 2006

Succinctness

(Defn) Succinct capture ≡ capturing a property without noncomputable
blowup in program size.

(Thm 6.3) It is impossible to succinctly capture properties not in Π0
2.

⇒ Languages capturing complexity classes (strict-Σ0
2) have noncomputable

blowup.

Silver lining: partial correctness properties are in Π0
1 ⊂ Π0

2.



PEPM 2006 January 26, 2006

Negative results on capture

There are no metalanguages capturing:

• (Prop 6.6) Metaprogram always halts.

• (Prop 6.7) Metaprogram always halts and produces a typeable/well-
formed instance (total correctness).

• Metaprogram performs only semantics-preserving transformations.



PEPM 2006 January 26, 2006

Positive results on capture

There is a metalanguage capturing partial correctness:

• If the metaprogram halts, it produces a typesafe/well-formed instance

But we might not like it:

• Run the metaprogram on its input.

• Check the output. If it’s bad, replace it with something safe.

i.e. no error messages.



PEPM 2006 January 26, 2006

Capture is tantamount to proof

L = a general-purpose language

Lψ = a restricted language capturing ψ

(Thm 6.2) Transforming a program p from L into an equivalent program
p′ ∈ Lψ via semantics-preserving steps is equivalent to proving that p |= ψ.

(given proofs of ‘Lψ captures ψ’ and ‘p ∼ p′’, we have a proof of p |= ψ.)

Corollary: If ψ is a nontrivial property, there can be no automated process
that rewrites programs from L to Lψ.



PEPM 2006 January 26, 2006

Heisenberg-like effects outside Σ0
1

Σ0
1 is the only class where we have finite axiomatizations ≡ complete proof

calculi.

Above this class we can only have partial axiomatizations (incomplete
proof calculi).

Consequence: If ψ is a property not in Σ0
1, and Lψ captures ψ, there will

always be programs p that are equivalent to some p′ ∈ Lψ but we cannot
prove that p ∼ p′.



PEPM 2006 January 26, 2006

Chasing properties with languages

We know that some properties cannot be captured (e.g., total correctness).

But, every ‘functional’ property is the limit of a sequence of languages with
ever-increasing complexity:

L0 ⊂ L1 ⊂ L2 ⊂ · · ·

with limi→∞Li = ψ
and Li+1 requires a longer interpreter than Li.

Two fundamentally opposed approaches to language design.



PEPM 2006 January 26, 2006

(conservative)

h

h

h h h

h h

h

h

HHHHHHHH
@

@
@

@
@

@
@

XXXXXXXXXXPP

(((((�����!!!!!�
�

�
�

�
�

�
(((((((((��������

ψ

Increasing
language
complexity

Under-

Over-
approximation

approximation

h



PEPM 2006 January 26, 2006

Conclusions

• Interesting properties of metaprograms are undecidable.

• But we can sometimes capture properties with restricted languages (e.g.
partial correctness of metalanguages).

• If capture is not possible (e.g. total correctness), we can chase properties:
a parade of language features, either

? Giving safety primacy, and recouping expressive power as language
complexity →∞ (e.g., Haskell generics)

? Giving expressive power primacy, and recouping safety as language
complexity →∞ (e.g., C++ generics)



PEPM 2006 January 26, 2006

Meta-conclusion

• Computability theory has useful explanatory power for tradeoffs in
metalanguage design.

More details:

Todd L. Veldhuizen. Tradeoffs in Metaprogramming. ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation (PEPM 2006), Charleston, South Carolina, January 9-10 2006.

Google ”Tradeoffs in metaprogramming”



PEPM 2006 January 26, 2006

References

[Hartmanis and Hopcroft(1976)] J. Hartmanis and J. E. Hopcroft.
Independence results in computer science. SIGACT News, 8(4):13–24,
1976. ISSN 0163-5700. doi: http://doi.acm.org/10.1145/1008335.
1008336.

[Holloway(1971)] G. H. Holloway. Interpreter/compiler integration in ECL.
SIGPLAN Not., 6(12):129–134, 1971. ISSN 0362-1340. doi: http:
//doi.acm.org/10.1145/942582.807994.

[Kleene(1950)] S. C. Kleene. Introduction to Metamathematics. Van
Nostrand, Princeton, New Jersey, 1950.

[Wegbreit(1974)] B. Wegbreit. The treatment of data types in el1.



PEPM 2006 January 26, 2006

Commun. ACM, 17(5):251–264, 1974. ISSN 0001-0782. doi: http:
//doi.acm.org/10.1145/360980.360992.


