Tradeoffs in Metaprogramming

Todd Veldhuizen
Open Systems Laboratory
Indiana University Bloomington

January 26, 2006

PEPM 2006 January 26, 2006

Two traditions of generics

Safe (but restricted expressiveness)

* Alphard, CLU, ML, Haskell, Java, ---

* A parade of language features to recover expressiveness: parametric
polymorphism, F-bounded polymorphism, type classes, typecase, ...

Unsafe (but very expressive)

x EL1 [Wegbreit(1974), Holloway(1971)] — arbitrary expressions in type
position, compiler had built-in partial evaluator for these.

*x C++: traits (typecase), template metaprograms

* A parade of language features to increase safety: signatures, concepts

Can we have safe and expressive at the same time?

PEPM 2006 January 26, 2006

Metalanguages

A metalanguage is a special-purpose language for generating or
transforming programs.

Stretch the definition to encompass languages for:
Metaprogramming: YACC, TXL, Stratego, ...
Code generation: SafeGen, MetaML, C4++ Templates, ...

Abstraction: Macros, generics, class definition syntax, ...
(A programming language is a pastiche of metalanguages.)

PEPM 2006 January 26, 2006

Metalanguages

(a) When is it possible to design metalanguages that...

guarantee well-formedness?
guarantee type safety?
preserve semantics of the object language?

always terminate?

and, (b) can we achieve the above without sacrificing expressive power?

PEPM 2006 January 26, 2006

You cannot have it both ways

Can | ...

1. Make C++ templates always halt without sacrificing expressive power?

2. Put a type system on JavaFront so that it only allows semantics-
preserving transformations, but without sacrificing expressive power?

3. Design a metalanguage for specifying optimizations that permits any
transformation that can be done in polynomial time, without making
some transformations ridiculously hard to express?

Answer key: (1) No. (2) No. (3) No.

PEPM 2006 January 26, 2006

Tradeoffs

In designing a metalanguage, one must trade off various facets:

Expressive power (the class of program behaviours that can be expressed)

Safety properties

Succinctness (do trivial metaprograms require vast amounts of code to
express?)

Decidable properties (what you can verify), computational complexity,
etc. etc.

PEPM 2006 January 26, 2006

Why do we need special metalanguages?

In a universal language (Turing-complete), nontrivial properties are
undecidable (Rice's theorem).

Cannot write a procedure that will decide whether a metaprogram

emits only well-formed or typeable outputs;
preserves semantics;
terminates;

runs in a given time or space bound (e.g., PTIME).

PEPM 2006 January 26, 2006

Capture

But sometimes we can find a programming language that “captures” a
property.

Example. This is a highly undecidable property: (strict X9):
Fin = Programs that terminate for at most a finite number of inputs.

Undecidable = you can't write a procedure that decides whether a Java
program satisfies the property.

PEPM 2006 January 26, 2006

Capture

But we can “capture” the property with a restricted language: only allow
programs of the form:

c1 when x = 21

co when £ = x9

¢, WwWhen x = x,

T otherwise

Every program in this sublanguage has the property Fin;
every behaviour in Fin has a representative in this sublanguage.

PEPM 2006 January 26, 2006

Capture

Say a restricted metalanguage captures a property 1) when:

1. Every program in the restricted language satisfies ¥;

2. Every program (in a general-purpose language) that has the property 1
is equivalent to some program in the restricted language.

PEPM 2006

Universal language

-

Property

Y

Ly

3 © =0 =3

January 26, 2006

PEPM 2006

Metalanguages capturing properties

When can we find metalanguages capturing useful properties
(well-formedness, typeable, semantics-preserving, ...)?

Computability theory is good at answering such questions.

January 26, 2006

PEPM 2006 January 26, 2006

The Arithmetical Hierarchy

Introduced by Kleene [Kleene(1950)] to classify noncomputable sets.

i :
~.
AO

IT

c.e. i 110 co-c.e.

3
I
e

A
N
e

A decidable

PEPM 2006 January 26, 2006

Class AY

g s
Aj
0 - N o Decidable sets.
25 115
N Rice! | .
AD ice’s theorem: there are no nontrivial program
y 2 N properties in this class.
i I1}

PEPM 2006 January 26, 2006

Class XY
\ e
AY Computably enumerable (c.e.) sets (aka r.e.)
P N Sets with effective proof calculi
P 1Y Sets with an effective inductive definition
AN % Sets with a finite axiomatization
Ag
N Properties living here: (not very interesting ones)
>0 1 “Metaprogram halts for at least one input.”
<« /

PEPM 2006 January 26, 2006

Class II!

Co-Computably enumerable (co-c.e.) sets (aka

b A0 - re.)
) 3 X Sets with an effective coinductive definition
0 0
22 . / L Properties living here:
A0 Runtime manageable properties (e.g., dynamic
2 . type safety).
/ Partial correctness properties: “If it halts, the
%) H(1) metaprogram produces a well-formed/typeable
. P Instance.”

PEPM 2006 January 26, 2006

Class X9

Sets that are c.e. relative to a I1Y oracle

5 \ /
AO) . .
3 Computational complexity classes live here:
SN “Metaprogram runs in O(n?) time.”
> 19 Fin is in this class.
« / _ _
A0 Independence issues arise: e.g., there are
/ 2 . programs whose running time is independent
0 1 of the usual axioms of set theory
N p Hartmanis and Hopcroft(1976)].

PEPM 2006 January 26, 2006

Class I1)
N e
Ag Sets that are co-c.e. relative to a XY oracle
/ AN
570 o | Properties living here:
2 H2 7]
Metaprogram always halts and produces a well-
N\ . ‘ formed /type-safe instance.”
Ay “Metaprogram performs only semantics-preserving
. g A . transformations.”
23 117
N e

PEPM 2006 January 26, 2006

Succinctness

Sometimes when we translate programs into a restricted metalanguage,
the size explodes. (e.g., DNF for boolean formulas: exponential blowup)

Sometimes this explosion in program length cannot be bounded by any
computable function:

e.g. restricted languages that are total (always terminate)

Noncomputable blowup = there are programs that require 10%° times
more code to express in the restricted language.

Whether we care is another matter (maybe they are not interesting
programs).

PEPM 2006 January 26, 2006

Succinctness

(Defn) Succinct capture = capturing a property without noncomputable
blowup in program size.

(Thm 6.3) It is impossible to succinctly capture properties not in II9.

= Languages capturing complexity classes (strict-X9) have noncomputable
blowup.

Silver lining: partial correctness properties are in IIY C IIS.

PEPM 2006 January 26, 2006

Negative results on capture

There are no metalanguages capturing:

(Prop 6.6) Metaprogram always halts.

(Prop 6.7) Metaprogram always halts and produces a typeable/well-
formed instance (total correctness).

Metaprogram performs only semantics-preserving transformations.

PEPM 2006 January 26, 2006

Positive results on capture

There is a metalanguage capturing partial correctness:
If the metaprogram halts, it produces a typesafe/well-formed instance
But we might not like it:

Run the metaprogram on its input.

Check the output. If it's bad, replace it with something safe.

l.e. NnO error messages.

PEPM 2006 January 26, 2006

Capture is tantamount to proof

L = a general-purpose language
L, = a restricted language capturing 1

(Thm 6.2) Transforming a program p from L into an equivalent program
p’ € Ly, via semantics-preserving steps is equivalent to proving that p = .

(given proofs of ‘L, captures ¢" and ‘p ~ p’’, we have a proof of p = .)

Corollary: If 1) is a nontrivial property, there can be no automated process
that rewrites programs from L to L.

PEPM 2006 January 26, 2006

Heisenberg-like effects outside XY

>{ is the only class where we have finite axiomatizations = complete proof
calculi.

Above this class we can only have partial axiomatizations (incomplete
proof calculi).

Consequence: If 1) is a property not in X9, and L, captures v, there will
always be programs p that are equivalent to some p’ € L,, but we cannot
prove that p ~ p’.

PEPM 2006 January 26, 2006

Chasing properties with languages

We know that some properties cannot be captured (e.g., total correctness).

But, every ‘functional’ property is the limit of a sequence of languages with
ever-increasing complexity:

LoC L C LyC---

and L;. 1 requires a longer interpreter than L;.

Two fundamentally opposed approaches to language design.

PEPM 2006

Over-
approximation

Under-

approximation
(conservative)

@,///

Increasing
language ———
complexity

January 26, 2006

PEPM 2006 January 26, 2006

Conclusions

Interesting properties of metaprograms are undecidable.

But we can sometimes capture properties with restricted languages (e.g.
partial correctness of metalanguages).

If capture is not possible (e.g. total correctness), we can chase properties:
a parade of language features, either

* Giving safety primacy, and recouping expressive power as language
complexity — oo (e.g., Haskell generics)

* Giving expressive power primacy, and recouping safety as language
complexity — oo (e.g., C+-+ generics)

PEPM 2006 January 26, 2006

Meta-conclusion

Computability theory has useful explanatory power for tradeoffs in
metalanguage design.

More detalils:

Todd L. Veldhuizen. Tradeoffs in Metaprogramming. ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM 2006), Charleston, South Carolina, January 9-10 2006.

Google " Tradeoffs in metaprogramming”

PEPM 2006 January 26, 2006

References

[Hartmanis and Hopcroft(1976)] J. Hartmanis and J. E. Hopcroft.
Independence results in computer science. SIGACT News, 8(4):13-24,
1976. ISSN 0163-5700. doi: http://doi.acm.org/10.1145/1008335.
1008336.

[Holloway(1971)] G. H. Holloway. Interpreter/compiler integration in ECL.
SIGPLAN Not., 6(12):129-134, 1971. ISSN 0362-1340. doi: http:
/ /doi.acm.org/10.1145 /942582.807994.

[Kleene(1950)] S. C. Kleene. Introduction to Metamathematics. Van
Nostrand, Princeton, New Jersey, 1950.

[Wegbreit(1974)] B. Wegbreit. The treatment of data types in ell.

PEPM 2006 January 26, 2006

Commun. ACM, 17(5):251-264, 1974. ISSN 0001-0782. doi: http:
//doi.acm.org/10.1145/360980.360992.

