Bidirectional Attribute Grammars and their

use in Extensible Languages

Eric Van Wyk! & Jodo Saraiva

University of Minnesota & University of Minho

WG 2.11
March 3, 2010, St. Andrews

1This work is partially funded by NSF grant #0905581

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 1 / 35

5000

4000

3000

EVI(x 10%

2000

1000

i i i i i
12001 1/2002 /2003 1/2004 1/2005 12006 Source: Google Maps.
Time (02/2000 to 05/2006)

» scale matters
» interest in MapReduce style computations

» FP language extensions to C

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 2 / 35

> e.g. variations on map
» 2D, 3D, time series
» context dependent

» missing, erroneous data

» optimizations, code generation

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010

Page 3 / 35

Extensible Languages

» Extensible language frameworks allow
» language designers to build language extensions
(plug-ins) that define
> new syntax
> new semantics

> new optimizations
» and programmers to create a customized language from
a chosen set of extensions.
Tools for composition and translator generation.
» Silver - an extensible AG system
» Copper - a parser and context-aware scanner generator
Verifiable composition of grammar or parse table

fragments
(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 4 / 35

Programmer Language

imports Langua_lge Feature
extensions Extensions Designers
WI’ItES %

writes

writes

writes

Wl’lteS Q

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 5 / 35

Data intensive computing project

» extensions to C, using Silver and Copper
» reasonable syntactic extensions

» optimization at the high level

» generation of efficient (parallel) C code

» recognizable generated C code

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 6 / 35

bidirectional transformations

» source: concrete syntax of extended C
» target: abstract syntax of extended C
» modifications:

» optimization of extended C

» compilation of extensions to plain C
» get: CST to AST

» mod: optimization and translation of extensions to plain
C, on AST

» put: AST to CST
» Note: editing the generated code is not the goal.

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 7 / 35

bidirectional transformations (2)

» challenge - source is richer than the target

» access to the original source is used to help in computing

the put function back after transformations on the target.
» here, more productions in concrete than abstract syntax
» also, maintaining white space and comments

» though not part of this talk

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 8 / 35

BX in Attribute grammars

Attribute grammars with

» reference attributes,

» forwarding, and

» a modified notion of pattern matching,
provide an nice means for implementing bidirectional
transformations.

Extensibility lets us add extensions to generate the put
transformations, under certain conditions, from the get

transformation.

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010

Page 9 / 35

Simple example: expressions

» Concrete syntax: E., T, F.
add.: E. — E. '+ T, sub.: E. — E. '—" T,
et.: E. — T,
mule: T — T, " F. tf.: T, — F,
nest.: Fo — ‘(" E. ')’
const.: F. — Int;
» Abstract syntax: Expr
add: Expr — Expr Expr sub: Expr — Expr Expr
mul: Expr — Expr Expr
const: Expr — Int,

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 10 / 35

Consider the trees for “1 - 2 x 3"

get and put map back and forth

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 11 / 35

(Some) attributes for bx

» getExpr :: Expr occurs on E., T., F.

» putE. :: E. occurs on Expr

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 12 / 35

Specification for get

add.:a: E. — e E. '+t T,

a.getExpr = add (e.getExpr, t.getExpr)
sub.:sE.— e E.'="tn T,

s.getExpr = sub (e.getExpr, t.getExpr)
ete:e Ec—t T,

e.getExpr = t.get Expr
mul.:m:= T,—t: T, % o F.

m.getExpr = mul (t.getExpr, f.getExpr)
neg.: n: F.— '—"e: E.

n.getExpr = sub (const('0’), e.getExpr)

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 13 / 35

Naive specification for put

Consider a naive, handwritten implementation.
add: a:: Expr — | :: Expr r :: Expr

a.putE. = add. (l.getE.,'+", tf.(nest.(r.getE.)))
sub: s :: Expr — | :: Expr r :: Expr

s.putE. = sub. (I.getE.,'—"', tf.(nest.(r.getE.)))
mul: m . Expr — | :: Expr r :: Expr

m.putE. = et (mul. (tf.(nest.(l.getE.)), '*', nest.(r.getE.)))

put(get(“1 +2*3")) = "1+ ((2) * (3))"
put(get(“l +-2")) = “1 + (0 - (2))"

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 14 / 35

Obviously, this fails.

» We add too many parenthesis.

Can mul map back to a T.instead ?

» We don't map back to specialized cases.
neg. is not used.
Or if we examine the target we may use neg. when it

wasn't in the source.

Having links back to the source would help.

Mapping back to multiple source NTs would help.

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 15 / 35

1. Linking from the target to the source.

Reference attributes, forwarding, new productions.

2. Multiple mappings back to the source.
Several put attributes in the target AG.

Writing all of this is cumbersome, can we generate it?

Yes, sometimes.

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010

Page 16 / 35

Links from the target to the source.

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 17 / 35

Reference Attributes

» attributes that are “pointers” to other tree nodes.

» we need to associate these pointers with nodes

(productions) in the abstract syntax

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 18 / 35

Links are reference attributes

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 19 / 35

Forwarding

» Using inherited attributes to establish this links is
unsatisfactory.
» Forwarding is used in (new) productions that
» define some semantics (attributes), and
» get remaining attributes from the “forwards to" tree
> e.g.
map: m:: Expr — ‘map’ f . Expr d:: Expr
{ m.errors = ...

forwards to ... translation to C ...

}

» similar to inheritance, but dynamic in nature

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 20 / 35

Forwarding in bx transformations

» Create a new production that takes the reference as a
child and forwards to the original AST production /
construct in the get specification.

» sub.: s E.— e E. ="t T,

s.getExpr = sub_bx_E. (e.getExpr, t.getExpr, s)
{- from s.getExpr = sub(e.getExpr, t.getExpr) -}

sub_bx_E.: e :: Expr — |::Expr r:Expr s:Ref E.
{ e.putE. = ... considers ...
forwards to sub(/, r)

}

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 21 / 35

Links are reference attributes

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 22 / 35

Computing put on the forwarding production

» If only one concrete production maps to sub we know
what the put transformation maps a sub to.
» But we may still use the source to access original terminal
symbols.
sub_bx_E.: e :: Expr — | ::Expr r:Expr s:Ref E.
{ e.putE. = case s of
sub. (-, dash, _) — sub.(l.putE., dash,r.putT,)
_ — error(cannot get here)
forwards to sub(/, r) }
» We can pattern match on the source to

» get access to terminals/layout in the source

» determine the productions to use
(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 23 / 35

Computing put on the forwarding production (2)

» Consider adding the contrived production
subFrom.: s :: E. — 'subtract' e :: E. ‘from' t :: T,
s.getExpr = sub (e.getExpr, t.getExpr)

» We extend the case expression on sub to

sub_bx_E.: e :: Expr — | Expr r:Expr s:Ref E.
{ e.putE. = case s of
sub. (-, dash, _) — sub.(l.putE., dash,r.putT,)
subFrom, (st,_, fr, _)
— subFrom.(st, |.putE., fr,r.putT,)
- — error(cannot get here)

forwards to sub(/, r) }

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010

Page 24 / 35

Computing put on the forwarding production (3)

» In general, we add a production for each source NT type
(Ec, F.) that has a production (sub., subFrom,. for E.and
neg. for F.) that translates to the target construct (sub).

» Other options

» a new production for each source production
sub_bx_sub., sub_bx_subFrom., sub_bx_neg,
» a single new production for each target production

sub_bx

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 25 / 35

Generating the put definition

» put is defined by a case-expression that pattern matches
on the source link.

» For
sub.:sE.— e E. ="t T,

s.getExpr = sub (e.getExpr, t.getExpr)

this requires that get defined as a simple application of
target language productions
and that all components in the source, except constant
terminals (keywords, punctuation, etc), provide pieces for
the get translation.

» But can be extended to if-then-else constructs (Yellin).

» Limiting for general bx transformations but OK here.
(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 26 / 35

Multiple mappings back to the source.

» getExpr :: Expr occurson E., T, F.
» putE. :: E. occurs on Expr
putT. :: T. occurs on Expr
putF. :: F. occurs on Expr
» Above is generated from nt :: {E., T., F.} — { Expr}
e.g. nt(E.) = Expr
nt is a function
nt’, the inverse, is not
» In general, if nt(A) = B generate
putA . A occurs on B

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 27 / 35

Generating attribute definitions for put

For the new abstract productions (e.g. sub_bx_putE,),

there are 2 cases for putA, for some NT A.

1. putA is defined by pattern matching on the source.

2. From other put attributes on the production.

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 28 / 35

The “can be" relation

» In the expression example
» T, can be E_ via et,
» F. can be T, via tf,
» E. can be F. via nest,
» A source NT X “can be" a source NT Y if
there is a production with X on the I.h.s and Y on the
r.h.s.
and a “copy rule” defines get on X to be get on Y.
> eg.
etc:enE.—t: T,
e.getExpr = t.getExpr

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 29 / 35

sub_bx_E.: e:: Expr — |::Expr r:Expr s:Ref E.
{ e.putE. = case s of
sub. (-, dash, _) — sub.(l.putE., dash, r.putT,)
subFrom, (st,_, fr, .)
— subFrom(st, |.putE., fr,r.putT,)

_ — error(cannot get here)

e.put T, = tf.(e.putF.)

e.putF. = nest.(e.putE,)

forwards to sub(/, r)

}

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 30 / 35

Comments

» At least one of the put attributes needs to be defined
explicitly - not based in the “can be" relation.
AG circularity check should detect when this is not the

case.

(@©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 31 / 35

When the source link is absent

» We still need to define the put attributes on the original
abstract syntax productions.
e.g. . define putE,, putT., and putF. on sub, add, mul.
» mul: e:: Expr — | Expr r: Expr
{ e.putE. = et (e.putT,)
e.putTo = mul.(l.put T, «' r.putF.)
e.putF. = nest.(e.putE;) }
» add(“1", mul(*2""3")).putE, = "1 + 2 * 3"
» mul("1" add("2","3")).putE, = "1 * (2 + 3)"
» w/o source access put(get(“1+(2%3)")) = “1+2%3"
» All comes from the grammar - no specification of

operator precedence or associativity.
(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 32 / 35

Gory details

add: e :: Expr — |::Expr r::Expr

{ e.putE. = add.(I.putE., r.putT,)
e.put T, = tf.(e.putF.)
e.putF. = nest.(e.putE.) }

mul: e :: Expr — | Expr r:: Expr

{ e.putE. = et (e.putT,)
e.putTo = mul.(l.put T, ', r.putF.)
e.putF. = nest.(e.putE;) }

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010

Page 33 / 35

Grammar-module-aware pattern matching

» A pattern in a case-expression in the target language will

not match these generated productions.

» We modify pattern matching such that on a tree
constructed by productions not defined in the grammar of

the case expression we match what that tree forwards to.

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 34 / 35

Future, ongoing work

» expand class of get transformation specs that we can

generate put from

» support get transformations from which we can “almost”

generate the complete put transformation.
» maintain layout: white space, comments
» fully incorporate into Silver, as an extension
» evaluation on the data-intensive applications

» Thanks for your attention.

(©Eric Van Wyk WG 2.11, St. Andrews, March 3, 2010 2010 Page 35 / 35

	Links from the target to the source.
	Multiple mappings back to the source.
	Modifying pattern matching

