Understanding the Genetic Makeup of
Linux Device Drivers
(Work in Progress)

Peter Senna Tschudin, Laurent Réveillere, Lingxiao Jiang,
David Lo, Julia Lawall, Gilles Muller

LIP6 Inria & UPMC, LaBRI, Singapore Management University
Preliminary work published at PLOS 2013

March, 2014



What is a device driver?

Data translator between OS and device

e May also perform computations, such as checksums



Device Driver Development Issues

~

Complex
Expensive
Slow

Error-Prone



What has been proposed

Domain-specific languages: Devil [OSDI 2000]

Automatic synthesis from specifications: Termite [SOSP 2009]

Templates: RevNIC [Eurosys 2010]



What has been proposed

Domain-specific languages: Devil [OSDI 2000]
e Only covers hardware interaction code.

Automatic synthesis from specifications: Termite [SOSP 2009]

Templates: RevNIC [Eurosys 2010]



What has been proposed

Domain-specific languages: Devil [OSDI 2000]
e Only covers hardware interaction code.

Automatic synthesis from specifications: Termite [SOSP 2009]
e Requires access to specifications

e Only covers input/output behavior

Templates: RevNIC [Eurosys 2010]



What has been proposed

Domain-specific languages: Devil [OSDI 2000]
e Only covers hardware interaction code.

Automatic synthesis from specifications: Termite [SOSP 2009]
e Requires access to specifications

e Only covers input/output behavior

Templates: RevNIC [Eurosys 2010]
e Templates must be handwritten

o Legality questionable



An observation

There are already good drivers
e Billions of instances of device drivers running right now
e Some have being developed for many years

e Used in mission critical environments (we are all alive)

How to exploit the knowledge found in good drivers to help us
make new ones?



Our vision

A driver is a collection of entry points

e Probe, remove, suspend, resume, ...

Entry points are made up of building blocks for common features
e Create and register device structure
e Initialize memory mapped I/O

e Enable reception of interrupts

Porting e.g. from Linux to BSD
e |dentify building blocks used in the Linux driver.
e Replace them with the corresponding BSD building blocks.



Our proposal:
Drivers are made of genes

A gene:
e Motivated by device features and OS API

e Set of possibly non-contiguous code fragments

e Express the behavior of a feature

How to identify genes?



Our proposal:
Drivers are made of genes

A gene:
e Motivated by device features and OS API

e Set of possibly non-contiguous code fragments

e Express the behavior of a feature

How to identify genes?

e Alternatively, how to decompose the code as a product line?



Clone detection?

Urban legend:
Device drivers are implemented by copy-paste

CP-Miner [OSDI 2004]:
e 22.3% of Linux 2.6.6 code is involved in clones
e Most common copy-paste groups contain only 2 copies

e Most common copy-paste segment size: 5-16 statements



Clone detection issues

static int ftmacl00_probe(...) {

irq = platform_get_irq(pdev, 0);
if (irq < 0) return irgq;

netdev = alloc_etherdev(...);

if (!'netdev) { ... }

priv->irq = irq;

err = register_netdev(netdev);

if (err) { ... }
return 0O;

free_netdev(netdev) ;

drivers/net/ethernet /faraday/ftmac100.c

static int am79c961_probe(...) {

dev = alloc_etherdev(...);
if (!dev) { ... }

ret = platform_get_irq(pdev, 0);
if (ret <0) { ... }

dev->irq = ret;

ret = register_netdev(dev);
if (ret == 0) {

return 0;
}

free_netdev(dev);

drivers/net/ethernet/amd/am79c961a.c



Protocol mining?

Urban legend?
Device drivers are programmed according to implicit rules for the
use of various combinatins of APl functions.

Bugs as deviant behavior [SOSP 2001], PR-Miner [FSE 2005], ... :

When A appears, if B often also appears, then maybe they are
related.

e PR-Miner finds 1,075 API function rules in Linux 2.6.11.

e 2.6.11 contains over 4 million lines of code



Protocol mining concepts and issues

Key concepts:

e Support: How often a set of things occurs together.

e Confidence: If part of a set of things is present, then how
often is the rest present as well.

Problem: Many variants of similar protocols:

e SET_NETDEV_DEV -> alloc_etherdev netdev_priv
e SET_NETDEV_DEV -> netdev_priv register_netdev

Problem: Multiple variants exist for some functions:

e alloc_etherdev, alloc_etherdev._mq, alloc_etherdev_mgs



Protocol mining issues, contd.

Problem: Inferred protocols may relate irrelevant information:

e INIT_WORK -> SET_NETDEV_DEV alloc_etherdev
netdev_priv register_netdev

Problem: Some functions used in multiple ways:

¢ Neighbors of ioremap:

in platform drivers in pci drivers
platform get _resource | pci_resource_start
resource_size pci_resource_len
request_mem_region




Some manually obtained results

platform_get_resource /
platform_get_resource_byname

\

request_mem_region

Ve N

ioremap ioremap_nocache

N7

[iounmap]

\

[release_mem_region]

platform_get_resource /
platform_get_resource_byname

\

devm_request_mem_region

devm_ioremap devm_ioremap_nocache

Generation 1

Generation 2

platform_get_resource /
platform_get_resource_byname

v

devm_request_and_ioremap

platform_get_resource /
platform_get_resource_byname

\

devm _ioremap_resource

Generation 3

Generation 4




Ongoing work

Sequencing and mapping genes
e Currently manual

e Exploring variants of protocol mining

Finding gene instances
e Coccinelle

e Writing semantic patches automatically

Organizing genes

o Feature-oriented gene database



