
Understanding the Genetic Makeup of
Linux Device Drivers

(Work in Progress)

Peter Senna Tschudin, Laurent Réveillère, Lingxiao Jiang,
David Lo, Julia Lawall, Gilles Muller

LIP6 Inria & UPMC, LaBRI, Singapore Management University
Preliminary work published at PLOS 2013

March, 2014



What is a device driver?

Data translator between OS and device

• May also perform computations, such as checksums



Device Driver Development Issues

Port

&&

Write //

99

%%

Maintain

Backport

88

• Complex

• Expensive

• Slow

• Error-Prone



What has been proposed

Domain-specific languages: Devil [OSDI 2000]

• Only covers hardware interaction code.

Automatic synthesis from specifications: Termite [SOSP 2009]

• Requires access to specifications

• Only covers input/output behavior

Templates: RevNIC [Eurosys 2010]

• Templates must be handwritten

• Legality questionable



What has been proposed

Domain-specific languages: Devil [OSDI 2000]

• Only covers hardware interaction code.

Automatic synthesis from specifications: Termite [SOSP 2009]

• Requires access to specifications

• Only covers input/output behavior

Templates: RevNIC [Eurosys 2010]

• Templates must be handwritten

• Legality questionable



What has been proposed

Domain-specific languages: Devil [OSDI 2000]

• Only covers hardware interaction code.

Automatic synthesis from specifications: Termite [SOSP 2009]

• Requires access to specifications

• Only covers input/output behavior

Templates: RevNIC [Eurosys 2010]

• Templates must be handwritten

• Legality questionable



What has been proposed

Domain-specific languages: Devil [OSDI 2000]

• Only covers hardware interaction code.

Automatic synthesis from specifications: Termite [SOSP 2009]

• Requires access to specifications

• Only covers input/output behavior

Templates: RevNIC [Eurosys 2010]

• Templates must be handwritten

• Legality questionable



An observation

There are already good drivers

• Billions of instances of device drivers running right now

• Some have being developed for many years

• Used in mission critical environments (we are all alive)

How to exploit the knowledge found in good drivers to help us
make new ones?



Our vision

A driver is a collection of entry points

• Probe, remove, suspend, resume, . . .

Entry points are made up of building blocks for common features

• Create and register device structure

• Initialize memory mapped I/O

• Enable reception of interrupts

Porting e.g. from Linux to BSD

• Identify building blocks used in the Linux driver.

• Replace them with the corresponding BSD building blocks.



Our proposal:
Drivers are made of genes

A gene:

• Motivated by device features and OS API

• Set of possibly non-contiguous code fragments

• Express the behavior of a feature

How to identify genes?

• Alternatively, how to decompose the code as a product line?



Our proposal:
Drivers are made of genes

A gene:

• Motivated by device features and OS API

• Set of possibly non-contiguous code fragments

• Express the behavior of a feature

How to identify genes?

• Alternatively, how to decompose the code as a product line?



Clone detection?

Urban legend:
Device drivers are implemented by copy-paste

CP-Miner [OSDI 2004]:

• 22.3% of Linux 2.6.6 code is involved in clones

• Most common copy-paste groups contain only 2 copies

• Most common copy-paste segment size: 5-16 statements



Clone detection issues

static int ftmac100_probe(...) {

...

irq = platform_get_irq(pdev, 0);

if (irq < 0) return irq;

netdev = alloc_etherdev(...);

if (!netdev) { ... }

...

priv->irq = irq;

...

err = register_netdev(netdev);

if (err) { ... }

...

return 0;

...

free_netdev(netdev);

}

drivers/net/ethernet/faraday/ftmac100.c

static int am79c961_probe(...) {

...

dev = alloc_etherdev(...);

if (!dev) { ... }

...

ret = platform_get_irq(pdev, 0);

if (ret < 0) { ... }

dev->irq = ret;

...

ret = register_netdev(dev);

if (ret == 0) {

...

return 0;

}

...

free_netdev(dev);

}

drivers/net/ethernet/amd/am79c961a.c



Protocol mining?

Urban legend?
Device drivers are programmed according to implicit rules for the

use of various combinatins of API functions.

Bugs as deviant behavior [SOSP 2001], PR-Miner [FSE 2005], . . . :

• When A appears, if B often also appears, then maybe they are
related.

• PR-Miner finds 1,075 API function rules in Linux 2.6.11.

• 2.6.11 contains over 4 million lines of code



Protocol mining concepts and issues

Key concepts:

• Support: How often a set of things occurs together.

• Confidence: If part of a set of things is present, then how
often is the rest present as well.

Problem: Many variants of similar protocols:

• SET NETDEV DEV -> alloc etherdev netdev priv

• SET NETDEV DEV -> netdev priv register netdev

Problem: Multiple variants exist for some functions:

• alloc etherdev, alloc etherdev mq, alloc etherdev mqs



Protocol mining issues, contd.

Problem: Inferred protocols may relate irrelevant information:

• INIT WORK -> SET NETDEV DEV alloc etherdev

netdev priv register netdev

Problem: Some functions used in multiple ways:

• Neighbors of ioremap:

in platform drivers in pci drivers

platform get resource pci resource start

resource size pci resource len

request mem region



Some manually obtained results

platform get resource /
platform get resource byname

��
request mem region

yy %%
ioremap

%%
ioremap nocache

yy
[iounmap]

��
[release mem region]

Generation 1

platform get resource /
platform get resource byname

��
devm request mem region

vv ((
devm ioremap devm ioremap nocache

Generation 2

platform get resource /
platform get resource byname

��
devm request and ioremap

Generation 3

platform get resource /
platform get resource byname

��
devm ioremap resource

Generation 4



Ongoing work

Sequencing and mapping genes

• Currently manual

• Exploring variants of protocol mining

Finding gene instances

• Coccinelle

• Writing semantic patches automatically

Organizing genes

• Feature-oriented gene database


