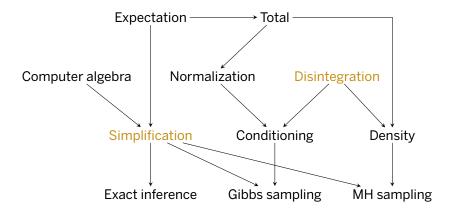
Symbolic Bayesian inference by lazy partial evaluation

Chung-chieh Shan (Indiana University)
Norman Ramsey (Tufts University)

November 2015

This research was supported by DARPA grants FA8750-14-2-0007 and FA8750-14-C-0002, NSF grant CNS-0723054, Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute), and the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc.

Program transformations galore



Diseases A and B are equally prevalent.

Disease A causes one of symptoms 1, 2, 3 with equal probability. Disease B causes one of symptoms 1, 2 with equal probability.

$$(A \mapsto 1/2, B \mapsto 1/2)$$
 : M Disease

Diseases A and B are equally prevalent.

Disease A causes one of symptoms 1, 2, 3 with equal probability. Disease B causes one of symptoms 1, 2 with equal probability.

Diseases A and B are equally prevalent.

Disease A causes one of symptoms 1, 2, 3 with equal probability.

Disease B causes one of symptoms 1,2 with equal probability.

do {disease
$$\sim \ (A \mapsto 1/2, B \mapsto 1/2 \)$$
;
symptom $\sim \$ **case** disease **of**

$$A \to \ (1 \mapsto 1/3, 2 \mapsto 1/3, 3 \mapsto 1/3 \)$$

$$B \to \ (1 \mapsto 1/2, 2 \mapsto 1/2 \);$$
return (symptom, disease)} : \mathbb{M} (Symptom × Disease)
$$= \ ((A,1) \mapsto 1/6, (A,2) \mapsto 1/6, (A,3) \mapsto 1/6,$$

$$(B,1) \mapsto 1/4, (B,2) \mapsto 1/4 \)$$

Diseases A and B are equally prevalent.

Disease A causes one of symptoms 1, 2, 3 with equal probability.

Disease B causes one of symptoms 1, 2 with equal probability.

do {disease
$$\sim \{A \mapsto 1/2, B \mapsto 1/2 \}$$
;
symptom \sim case disease of

$$A \to \{1 \mapsto 1/3, 2 \mapsto 1/3, 3 \mapsto 1/3 \}$$

$$B \to \{1 \mapsto 1/2, 2 \mapsto 1/2 \};$$
return (symptom, disease)} : M (Symptom × Disease)

$$= \{(A, 1) \mapsto 1/6, (A, 2) \mapsto 1/6, (A, 3) \mapsto 1/6,$$

$$(B, 1) \mapsto 1/4, (B, 2) \mapsto 1/4 \}$$
⇒ λ symptom. case symptom of

 $\Rightarrow \lambda$ symptom. case symptom of

Diseases A and B are equally prevalent.

$$(A \mapsto 1/2, B \mapsto 1/2)$$
 : M Disease

Diseases A and B are equally prevalent.

```
\begin{tabular}{ll} \textbf{do} & \{\textit{disease} & \sim \cline{(A \mapsto 1/2, B \mapsto 1/2)}; \\ & \textit{symptom} & \sim \textbf{case} \ \textit{disease} \ \textbf{of} \\ & A \to \textbf{uniform} \ 0 \ 3 \\ & B \to \textbf{uniform} \ 0 \ 2; \\ & \textbf{return} \ (\textit{symptom}, \textit{disease})\} & : \cline{(Symptom \times Disease)} \end{tabular}
```


Diseases A and B are equally prevalent.

```
do {disease \leftarrow ?A \mapsto 1/2, B \mapsto 1/2 \ ; symptom \leftarrow case disease of A \to \text{uniform 0 3} B \to \text{uniform 0 2}; return (symptom, disease)} : \mathbb{M} (Symptom \times Disease)
```


Diseases A and B are equally prevalent.

```
do { disease \Leftrightarrow A \mapsto 1/2, B \mapsto 1/2 \ :
        symptom ← case disease of
                            A \rightarrow uniform 0 3
                            B \rightarrow uniform 0 2:
         return (symptom, disease) \mathbb{M} (Symptom \times Disease)
\Rightarrow \lambda symptom. if symptom < 2
                     then A \mapsto 1/6, B \mapsto 1/4
                                                           Α
                     else 7A \mapsto 1/6
    : Symptom \rightarrow \mathbb{M} Disease
                                                           B
```


Choose *disease* uniformly from $[1,3] \subset \mathbb{R}$.

Choose symptom uniformly from $[0, \textit{disease}] \subset \mathbb{R}$.

uniform 13 : M Disease

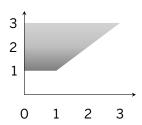

```
Choose disease uniformly from [1,3] \subset \mathbb{R}.

Choose symptom uniformly from [0,disease] \subset \mathbb{R}.

do \{disease \sim uniform\ 1\ 3; \\ symptom \sim uniform\ 0\ disease; \\ return\ (symptom,disease)\} : \mathbb{M}\ (Symptom \times Disease)
```


Choose disease uniformly from $[1,3] \subset \mathbb{R}$. Choose symptom uniformly from $[0,disease] \subset \mathbb{R}$.

```
 \begin{array}{ll} \textbf{do } \{\textit{disease} \leftarrow \textbf{uniform 1 3}; \\ \textit{symptom} \leftarrow \textbf{uniform 0 disease}; \\ \textbf{return } \big(\textit{symptom}, \textit{disease}\big) \} & : \mathbb{M} \left( \text{Symptom} \times \text{Disease} \right) \end{array}
```




```
Choose disease uniformly from [1,3] \subset \mathbb{R}.
Choose symptom uniformly from [0, disease] \subset \mathbb{R}.
  do {disease ← uniform 1 3;
       symptom ← uniform 0 disease;
       return (symptom, disease) : \mathbb{M} (Symptom \times Disease)
\Rightarrow \lambdasymptom. do {disease \leftarrow uniform 1 3;
                     if 0 < \text{symptom} < \text{disease}
                        else ? \ \ \}
   : Symptom \rightarrow \mathbb{M} Disease
                                                    3
                                                    2
```


Measure semantics

$$[\![\mathbb{M} \ \alpha]\!] = (\alpha \to \mathbb{R}) \to \mathbb{R}$$

Measure semantics

Measure semantics

Disintegration specification

 $\llbracket m \rrbracket = \llbracket \operatorname{do} \left\{ s \leftarrow \operatorname{lebesgue}; d \leftarrow k; \operatorname{return} \left(s, d \right) \right\} \rrbracket$

Disintegration specification

$$[\![m]\!] = [\![do \{s \sim lebesgue; d \sim k; return (s,d)\}]\!]$$

```
m = do \{d \sim uniform 13; k = do \{d \sim uniform 13;
          s \leftarrow uniform 0 d:
          return (s,d)
```

$$k = extbf{do} \{ d \sim extbf{uniform } 1 \, 3; \\ extbf{if } 0 \leq s \leq d \\ extbf{then } \{ d \mapsto 1/d \} \\ extbf{else } \{ \} \}$$

Disintegration specification

$$[\![m]\!] = [\![do \{s \sim lebesgue; d \sim k; return (s, d)\}]\!]$$

$$m = \operatorname{do} \; \{ d \mathrel{\sim} \operatorname{uniform} \; 1 \; 3; \qquad k = \operatorname{do} \; \{ d \mathrel{\sim} \operatorname{uniform} \; 1 \; 3; \\ s \mathrel{\sim} \operatorname{uniform} \; 0 \; d; \qquad \qquad \text{if} \; 0 \leq s \leq d \\ \operatorname{return} \; (s,d) \} \qquad \qquad \operatorname{then} \; (d \mapsto 1/d) \\ \operatorname{else} \; \; (f) \}$$

$$[k] = \lambda c. \int_{1}^{3} \frac{\text{if } 0 \le s \le d \text{ then } \frac{c(d)}{d} \text{ else } 0}{2} dd
 [do \{s \leftarrow \text{lebesgue}; d \leftarrow k; \text{ return } (s, d)\}]
 = \lambda c. \int_{-\infty}^{\infty} \int_{1}^{3} \frac{\text{if } 0 \le s \le d \text{ then } \frac{c(s, d)}{d} \text{ else } 0}{2} dd ds
 = \lambda c. \int_{1}^{3} \int_{0}^{d} \frac{c(s, d)}{2 \cdot d} ds dd = [m]$$

Useful but unspecified and thus unautomated before

```
1. Initialise x_{0,1:n}.
2. For i = 0 to N - 1
      - Sample x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, \dots, x_n^{(i)}).
      - Sample x_2^{(i+1)} \sim p(x_2|x_1^{(i+1)}, x_3^{(i)}, \dots, x_n^{(i)}).
      - Sample x_i^{(i+1)} \sim p(x_i|x_1^{(i+1)}, \dots, x_{i-1}^{(i+1)}, x_{i+1}^{(i)}, \dots, x_n^{(i)}).
      - Sample x_n^{(i+1)} \sim p(x_n | x_1^{(i+1)}, x_2^{(i+1)}, \dots, x_{n-1}^{(i+1)}).
```

Figure 12. Gibbs sampler.

Borel paradox

Radio Yerevan

Question: Is it correct that Grigori Grigorievich Grigoriev won a

luxury car at the All-Union Championship in Moscow?

Answer: In principle, yes.

But first of all it was not Grigori Grigorievich Grigoriev, but Vassili Vassilievich Vassiliev.

Second, it was not at the All-Union Championship in Moscow, but at a Collective Farm Sports Festival in Smolensk.

Third, it was not a car, but a bicycle.

And fourth he didn't win it, but rather it was stolen from him.

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.

evaluate :
$$\lceil \alpha \rceil \to H \to (\alpha \times H)$$

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.

But first of all it is not an evaluator, but a partial

evaluator.

evaluate :
$$\lceil \alpha \rceil \to H \to (\lfloor \alpha \rfloor \times H)$$

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.

But first of all it is not an evaluator, but a partial

evaluator.

Second, it not only evaluates terms, but also performs random choices.

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.

But first of all it is not an evaluator, but a partial

evaluator.

Second, it not only evaluates terms, but also

performs random choices.

Third, it not only produces outcomes and values,

but also constrains them.

$$\begin{array}{c} \text{evaluate}: \left\lceil \quad \alpha \right\rceil \to H \to \left(\left\lfloor \alpha \right\rfloor \to H \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right) \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \\ \text{perform}: \left\lceil \mathbb{M} \ \alpha \right\rceil \to H \to \left(\left\lfloor \alpha \right\rfloor \to H \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right) \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \\ \text{constrain-value}: \left\lceil \quad \alpha \right\rceil \to \left\lfloor \alpha \right\rfloor \to H \to \left(H \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right) \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \\ \text{constrain-outcome}: \left\lceil \mathbb{M} \ \alpha \right\rceil \to \left\lfloor \alpha \right\rfloor \to H \to \left(H \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right) \to \left\lfloor \mathbb{M} \ \gamma \right\rfloor \end{array}$$

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.

But first of all it is not an evaluator, but a partial

evaluator.

Second, it not only evaluates terms, but also

performs random choices.

Third, it not only produces outcomes and values,

but also constrains them.

And fourth it doesn't produce one term, but searches for a random variable to constrain.

```
\begin{array}{c} \text{evaluate}: \left\lceil \quad \alpha \right\rceil \to H \to \left( \left\lfloor \alpha \right\rfloor \to H \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \right) \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \\ \text{perform}: \left\lceil \mathbb{M} \ \alpha \right\rceil \to H \to \left( \left\lfloor \alpha \right\rfloor \to H \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \right) \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \\ \text{constrain-value}: \left\lceil \quad \alpha \right\rceil \to \left\lfloor \alpha \right\rfloor \to H \to \left( H \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \right) \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \\ \text{constrain-outcome}: \left\lceil \mathbb{M} \ \alpha \right\rceil \to \left\lfloor \alpha \right\rfloor \to H \to \left( H \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \right) \to \left\{ \left\lfloor \mathbb{M} \ \gamma \right\rfloor \right\} \end{array}
```

Automatic disintegrator in action

Automatic disintegrator in action

```
perform (do \{d \leftarrow \text{uniform } 1 \text{ 3; } s \leftarrow \text{uniform } 0 \text{ } d; \text{ return } (s,d)\})^{\square}
                                                               [d' \sim uniform 1 3]
perform (do {s \leftarrow uniform 0 d'; return (s, d')})
perform (return (s', d'))
evaluate (s', d') \Rightarrow (s', d')
 constrain-value s' s
  constrain-outcome (uniform 0 d') s
                                                                 nondeterminism
  evaluate 0 \Rightarrow 0
   evaluate d'
   perform (uniform 13)
                                                    do \{d'' \leftarrow \text{uniform } 1 \text{ 3}; \square\}
                                              [let d' = d''; s' \leftarrow uniform 0 d']
               [let d' = d''; let s' = s]
```


Automatic disintegrator in action

```
perform (do \{d \leftarrow \text{uniform } 1 \text{ 3; } s \leftarrow \text{uniform } 0 \text{ } d; \text{ return } (s,d)\})^{\square}
                                                                                  [d' \sim uniform 1 3]
perform (do {s \leftarrow \text{uniform 0 } d'; \text{ return } (s, d')})

perform (return (s', d'))

evaluate (s', d') \Rightarrow (s', d')
 constrain-value s' s
  constrain-outcome (uniform 0 d') s
                                                                                     nondeterminism
   evaluate 0 \Rightarrow 0
    evaluate d'
    perform (uniform 1 3)
                                                                    do {d'' ← uniform 1 3; \square}
                                                            [let d' = d''; s' \leftarrow uniform 0 \ d']
               [let d' = d''; s' \leftarrow uniform 0 \ d'] if 0 \le s \le d'' then do \{() \leftarrow \{() \mapsto 1/d'' \}; \Box\} else \{() \leftarrow \{() \mapsto 1/d'' \}; \Box\}
                                                                          [let d' = d''; let s' = s]
```


Determinism requires inversion

```
do \{d \sim \text{uniform 0 1}; \\ s \sim \text{return } (2 \cdot d); \\ \text{return } (s, d)\}
```


Determinism requires inversion

```
do \{d \nsim \text{ uniform 0 1}; \\ s \nsim \text{ return } (2 \cdot d); \\ \text{return } (s, d)\}
```

```
 \begin{aligned} & \textbf{do } \{d_1 \nsim \textbf{ uniform 0 1}; \\ & d_2 \nsim \textbf{ uniform 0 1}; \\ & s \nsim \textbf{ return } (d_1 + d_2); \\ & \textbf{ return } (s, (d_1, d_2)) \} \end{aligned}
```

Determinism requires inversion

do $\{d \sim \text{uniform } 0 1;$

```
s \leftarrow \text{return } (2 \cdot d); \qquad \qquad d_2 \leftarrow \text{uniform } 0 \text{ 1}; \\ \text{s} \leftarrow \text{return } (d_1 + d_2); \\ \text{return } (s, (d_1, d_2))\} \text{do } \{d_1 \leftarrow \text{uniform } 0 \text{ 1}; \\ d_2 \leftarrow (1 \mapsto 1/2, 2 \mapsto 1/2); \\ \text{s} \leftarrow \text{return } d_1^{d_2}; \\ \text{return } (s, (d_1, d_2))\}
```

do $\{d_1 \leftarrow \text{uniform } 0 1;$

Summary

- Observe symptoms with hidden causes
- Infer probabilities by program transformations
- Specify disintegration by measure semantics
- Automate disintegration by lazy partial evaluation
- Future work: arrays (symbolically evaluated)

beyond **lebesgue** prove correctness computer algebra

— please help!

