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Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.
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Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.
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Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

uniform 13 : M Disease



Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;
symptom « uniform O disease;
return (symptom, disease) } : M (Symptom x Disease)



Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;
symptom « uniform O disease;
return (symptom, disease) } : M (Symptom x Disease)




Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;
symptom « uniform O disease;
return (symptom, disease) } : M (Symptom x Disease)
= \symptom. do {disease « uniform 1 3;
if 0 < symptom < disease
then {disease — Vdisease |

else {{}

: Symptom — M Disease
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Disintegration specification

[m] = [do {s « lebesgue; d « k; return (s,d)}]
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[m] = [do {s « lebesgue; d « k; return (s,d)}]

m = do {d « uniform 1 3; k = do {d « uniform 1 3;

s « uniform O d; if0<s<d
return (s,d)} then |d — V/df
else [}
d
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1 2
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Useful but unspecified and thus unautomated before

1. Initialise zg,1:5.
2.Fori=0toN—-1
- Sample 2{*V ~ pla1[cf”, 2t ..., 2l).
~ Sample af*") ~ p(asla{ ™V, 2f?,...,2l)).
— Sample o~ play Y, 1Dy, 00
~ Sample 2 ~ plan|a{ ), 25D, o)),

Figure 12. Gibbs sampler.

Borel paradox



Radio Yerevan

Question: Is it correct that Grigori Grigorievich Grigoriev won a
luxury car at the All-Union Championship in Moscow?

Answer: In principle, yes.

But first of all it was not Grigori Grigorievich
Grigoriev, but Vassili Vassilievich Vassiliev.

Second, it was not at the All-Union Championship
in Moscow, but at a Collective Farm Sports Festival in
Smolensk.

Third, it was not a car, but a bicycle.

And fourth he didn't win it, but rather it was stolen
from him.



Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?
Answer: In principle, yes.

evaluate : [a] — H — (a x H)
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Automatic disintegrator in action

[perform (do {d « uniform 1 3; s « uniform O d; return (s, d)})[]
[d" « uniform 1 3]
perform (do {s « uniform O d’; return (s,d")})

/ H ! H U
perform (return (s', d')) [d" « uniform 1 3; s’ « uniform O d’]

| evaluate (s, d’) = (s/,d')
[constrain-value s’ s
[constrain-outcome (uniform O d’) s
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Determinism requires inversion

do {d « uniform O 1;
s « return (2 - d);
return (s,d)}
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Determinism requires inversion

do {d « uniform O 1; do {d; « uniform O 1;
s « return (2 - d); dz « uniform O 1;
return (s,d)} s « return (d; + dz);

return (s, (di,d2))}
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s « return d%;
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Summary

v

Observe symptoms with hidden causes

v

Infer probabilities by

v

Specify by measure semantics

v

Automate disintegration by

» Future work: arrays (symbolically evaluated)
beyond lebesgue
prove correctness
computer algebra
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