Symbolic Bayesian inference
by lazy partial evaluation

Chung-chieh Shan (Indiana University)
Norman Ramsey (Tufts University)

November 2015

This research was supported by DARPA grants FA8750-14-2-0007 and FA8750-14-C-0002,
NSF grant CNS-0723054, Lilly Endowment, Inc. (through its support for the Indiana
University Pervasive Technology Institute), and the Indiana METACyt Initiative. The Indiana
METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc.

Program transformations galore

Expectation

Computer algebra

Exact inference

Total

Normalization

7N

Conditioning Density

Gibbs sampling MH sampling

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

A—12,B—12(: Ml Disease

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease «~ (A — 1/2,B+ 12 ;
symptom « case disease of
A—11—132+— 133~ 13]
B — 11+ 12,2 — 12§,
return (symptom, disease) } : M (Symptom x Disease)

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease «~ (A — 1/2,B+ 12 ;
symptom « case disease of
A—11—132+—133—13(
B — 1+ 12,2+ 12f;
return (symptom, disease)} : M (Symptom x Disease)
= (A1) = 16, (A, 2) = Ve, (A, 3) = Ve,
(B,1) — 14, (B, 2) — 1/4f

Al Ye s 16
B| Ya Y4 O

1 2 3

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease «~ (A — 1/2,B+ 12 ;
symptom « case disease of
A—11—132+—133—13(
B — 1+ 12,2+ 12f;
return (symptom, disease)} : M (Symptom x Disease)
= (A1) = 16, (A, 2) = Ve, (A, 3) = Ve,
(B,1) — 14, (B, 2) — 1/4f

= Asymptom. case symptom of
1 — A~ e B 14l

2 = A e B+ 1/af Al Ye s 16
3— 1A 1efl B| Ya Ya 0O
: Symptom — M Disease

1 2 3

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

A—12 B 127§ : M Disease

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

do {disease « |A — 12 B+ 1/2 1,
symptom « case disease of
A — uniform O 3
B — uniform O 2;
return (symptom, disease) } : M (Symptom x Disease)

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

do {disease « |A — 12 B+ 1/2 1,
symptom «- case disease of
A — uniform O 3
B — uniform O 2;
return (symptom, disease) } : M (Symptom x Disease)

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] C R.
Disease B causes a symptom chosen uniformly from [0, 2] C R.

do {disease « |A — 12 B+ 1/2 1,
symptom «- case disease of
A — uniform 0 3
B — uniform O 2;
return (symptom, disease) } : M (Symptom x Disease)
= Asymptom. if symptom < 2
then A — 1/6,B — 1/4f
else A — 1/ef
: Symptom — M Disease B

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

uniform 13 : M Disease

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;
symptom « uniform O disease;
return (symptom, disease) } : M (Symptom x Disease)

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;
symptom « uniform O disease;
return (symptom, disease) } : M (Symptom x Disease)

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] C R.
Choose symptom uniformly from [0, disease| C R.

do {disease « uniform 1 3;
symptom « uniform O disease;
return (symptom, disease) } : M (Symptom x Disease)
= \symptom. do {disease « uniform 1 3;
if 0 < symptom < disease
then {disease — Vdisease |

else {{}

: Symptom — M Disease

[Ma] = (¢ —R)—R

Measure semantics
[M o]

[1A — Y2,B — 1/2(]

[return (symptom, disease)]

[uniform 1 3]

[lebesgue]

[do {x « m; k}]

(e > R)—=R

= \c.c(symptom, disease)
= [l(symptom,disease) — 1(]

3c(x)
)\c./1 de

Ac. /OO c(x) dx
Ac. [m](Ax. [k]c)

Measure semantics
[M o]

[1A — Y2,B — 1/2(]

[return (symptom, disease)]

[uniform 1 3]

[lebesgue]
[do {x « m; k}]

udo {d « uniform 1 3;”

s « uniform O d;
return (s,d)}

(e > R)—=R

c(A) <(B)
AC.— + —=

¢ T3
Ac. c(symptom, disease)

[1(symptom, disease) — 1]

Ac. /3 ch) dx
1
Ac. /OO c(x) dx

—00

Ac. [m](Ax. [k]c)

3 pd
)\c.// ©(5:9) 45 4
1Jo 2-d

Disintegration specification

[m] = [do {s « lebesgue; d « k; return (s,d)}]

Disintegration specification

[m] = [do {s « lebesgue; d « k; return (s,d)}]

m = do {d « uniform 1 3; k = do {d « uniform 1 3;

s « uniform O d; if0<s<d
return (s,d)} then |d — V/df
else [}

Disintegration specification

[m] = [do {s « lebesgue; d « k; return (s,d)}]

m = do {d « uniform 1 3; k = do {d « uniform 1 3;

s « uniform O d; if0<s<d
return (s,d)} then |d — V/df
else [}
d
3if0§s§dthen£else0
[K] =)\c./ d dd
1 2
[do {s « lebesgue; d « k; return (s, d)}]
o 3if0 <s <dthen c(s.d) else O
=)\c./ / d dd ds
0 J1 2

3 rd
~ Xc. /1 /O CS’Z) ds dd = [m]

Useful but unspecified and thus unautomated before

1. Initialise zg,1:5.
2.Fori=0toN—-1
- Sample 2{*V ~ pla1[cf”, 2t ..., 2l).
~ Sample af*") ~ p(asla{ ™V, 2f?,...,2l)).
— Sample o~ play Y, 1Dy, 00
~ Sample 2 ~ plan|a{), 25D, o)),

Figure 12. Gibbs sampler.

Borel paradox

Radio Yerevan

Question: Is it correct that Grigori Grigorievich Grigoriev won a
luxury car at the All-Union Championship in Moscow?

Answer: In principle, yes.

But first of all it was not Grigori Grigorievich
Grigoriev, but Vassili Vassilievich Vassiliev.

Second, it was not at the All-Union Championship
in Moscow, but at a Collective Farm Sports Festival in
Smolensk.

Third, it was not a car, but a bicycle.

And fourth he didn't win it, but rather it was stolen
from him.

Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?
Answer: In principle, yes.

evaluate : [a] — H — (a x H)

10

Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.

evaluate : [a] = H — (|a| X H)

10

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.
Second, it not only evaluates terms, but also
performs random choices.

evaluate: | o] = H — (o] = H — [M~]|) — |[M~|
perform: [Ma] - H— (la] = H— [M~]) — [M~]|

10

Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.
Second, it not only evaluates terms, but also
performs random choices.
Third, it not only produces outcomes and values,
but also constrains them.

evaluate: | o] = H— (la] > H— [M~|) = [M~]|

perform: [Ma] - H— (la] = H— [M~v]) = [M~]|
constrain-value : [a] — |a] = H— (H— [M~]) = [M~y|
constrain-outcome : [M a| — |a) = H— (H— [M~]) — [M~]|

10

Automatic disintegrator

Question: lIs it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But first of all it is not an evaluator, but a partial
evaluator.
Second, it not only evaluates terms, but also
performs random choices.
Third, it not only produces outcomes and values,
but also constrains them.

evaluate: [o] = H = (la] = H— [[M~]}) = {|[M~y]
perform: [Ma| - H— (la] = H— {{M~]}) = {[M~]
constrain-value: [o] — |a] = H— (H— {[M~]}) — {|M~]
constrain-outcome : [M a| — |a] = H— (H— {[M~]}) — {|[M~]|

10

Automatic disintegrator in action

[perform (do {d « uniform 1 3; s « uniform O d; return (s, d)})[]
[d" « uniform 1 3]
perform (do {s « uniform O d’; return (s,d")})

/ H ! H U
perform (return (s', d')) [d" « uniform 1 3; s’ « uniform O d’]

| evaluate (s, d’) = (s/,d')
[constrain-value s’ s
[constrain-outcome (uniform O d’) s

11

Automatic disintegrator in action

[perform (do {d « uniform 1 3; s « uniform O d; return (s,d)})

[

[d" « uniform 1 3]
perform (do {s « uniform O d’; return (s,d")})

/ H ! H U
perform (return (s', d')) [d" « uniform 1 3; s’ « uniform O d’]

| evaluate (s, d’) = (s/,d')
[constrain-value s’ s

[constrain-outcome (uniform 0 d') s

[evaluate 0=0 nondeterminism

evaluate d’
[p:rcfjc;rm (uniform 1 3) do {d” « uniform 1 3; (J}
g [let d’ = d”; s’ « uniform O d’]

if 0 <s <d’thendo {()«~ {()— Yo’ |; O} else ||
[let ' =d”; let s’ =s]

11

Automatic disintegrator in action

[perform (do {d « uniform 1 3; s « uniform O d; return (s, d)})[]
[d" « uniform 1 3]
perform (do {s « uniform O d’; return (s,d")})

/ H ! H U
perform (return (s', d')) [d" « uniform 1 3; s’ « uniform O d’]

| evaluate (s',d’) = (s/,d')
[constrain-value s’ s
[constrain-outcome (uniform 0 d') s
[evaluate 0 = 0
evaluate d’

[perform (uniform 1 3)

= d//
= d//

nondeterminism

[let d’ = d”; s’ « uniform O d’]

11

Determinism requires inversion

do {d « uniform O 1;
s « return (2 - d);
return (s,d)}

12

Determinism requires inversion

do {d « uniform O 1; do {d; « uniform O 1;
s « return (2 - d); dz « uniform O 1;
return (s,d)} s « return (d; + dz);

return (s, (di,d2))}

12

Determinism requires inversion

do {d « uniform O 1; do {d; « uniform O 1;
s « return (2 - d); dz « uniform O 1;
return (s,d)} s « return (d; + dz);

return (s, (di,d2))}

do {d; « uniform O 1;
dy « (1122127,
s « return d%;
return (s, (dy,d2))}

12

Summary

v

Observe symptoms with hidden causes

v

Infer probabilities by

v

Specify by measure semantics

v

Automate disintegration by

» Future work: arrays (symbolically evaluated)
beyond lebesgue
prove correctness
computer algebra

13

