
1

Symbolic Bayesian inference
by lazy partial evaluation

Chung-chieh Shan (Indiana University)
Norman Ramsey (Tufts University)

November 2015

This research was supported by DARPA grants FA8750-14-2-0007 and FA8750-14-C-0002,
NSF grant CNS-0723054, Lilly Endowment, Inc. (through its support for the Indiana
University Pervasive Technology Institute), and the Indiana METACyt Initiative. The Indiana
METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc.

2

Program transformations galore

Expectation Total

Computer algebra Normalization Disintegration

Simpli�cation Conditioning Density

Exact inference Gibbs sampling MH sampling

3

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + : M Disease;

symptom¢ case disease of
A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(A, 1) 7→ 1/6, (A, 2) 7→ 1/6, (A, 3) 7→ 1/6,
(B, 1) 7→ 1/4, (B, 2) 7→ 1/4+

⇒λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+

: Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

3

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + ;
symptom¢ case disease of

A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(A, 1) 7→ 1/6, (A, 2) 7→ 1/6, (A, 3) 7→ 1/6,
(B, 1) 7→ 1/4, (B, 2) 7→ 1/4+

⇒λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+

: Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

3

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + ;
symptom¢ case disease of

A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(A, 1) 7→ 1/6, (A, 2) 7→ 1/6, (A, 3) 7→ 1/6,
(B, 1) 7→ 1/4, (B, 2) 7→ 1/4+

⇒λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+

: Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

3

Disintegration for medical diagnosis

Diseases A and B are equally prevalent.
Disease A causes one of symptoms 1, 2, 3 with equal probability.
Disease B causes one of symptoms 1, 2 with equal probability.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + ;
symptom¢ case disease of

A→ *1 7→ 1/3, 2 7→ 1/3, 3 7→ 1/3+
B→ *1 7→ 1/2, 2 7→ 1/2+;

return (symptom, disease)} : M (Symptom× Disease)

= *(A, 1) 7→ 1/6, (A, 2) 7→ 1/6, (A, 3) 7→ 1/6,
(B, 1) 7→ 1/4, (B, 2) 7→ 1/4+

⇒λsymptom. case symptom of
1 → *A 7→ 1/6,B 7→ 1/4+
2 → *A 7→ 1/6,B 7→ 1/4+
3→ *A 7→ 1/6+

: Symptom→M Disease

A 1/6 1/6 1/6

B 1/4 1/4 0

1 2 3

4

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + : M Disease;

symptom¢ case disease of
A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+

: Symptom→M Disease

0 1 2 3

B

A

4

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + ;
symptom¢ case disease of

A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+

: Symptom→M Disease

0 1 2 3

B

A

4

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + ;
symptom¢ case disease of

A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+

: Symptom→M Disease

0 1 2 3

B

A

4

Disintegration on a zero-probability observation

Diseases A and B are equally prevalent.
Disease A causes a symptom chosen uniformly from [0, 3] ⊂ R.
Disease B causes a symptom chosen uniformly from [0, 2] ⊂ R.

do {disease¢ *A 7→ 1/2,B 7→ 1/2 + ;
symptom¢ case disease of

A→ uniform 0 3
B→ uniform 0 2;

return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom. if symptom ≤ 2
then *A 7→ 1/6,B 7→ 1/4+
else *A 7→ 1/6+

: Symptom→M Disease

0 1 2 3

B

A

5

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3 : M Disease;

symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease

then *disease 7→ 1/disease+
else *+}

: Symptom→M Disease

0 1 2 3

1

2

3

5

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3;
symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease

then *disease 7→ 1/disease+
else *+}

: Symptom→M Disease

0 1 2 3

1

2

3

5

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3;
symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease

then *disease 7→ 1/disease+
else *+}

: Symptom→M Disease

0 1 2 3

1

2

3

5

Disintegration on a zero-probability observation

Choose disease uniformly from [1, 3] ⊂ R.
Choose symptom uniformly from [0, disease] ⊂ R.

do {disease¢ uniform 1 3;
symptom¢ uniform 0 disease;
return (symptom, disease)} : M (Symptom× Disease)

⇒λsymptom.do {disease¢ uniform 1 3;
if 0 ≤ symptom ≤ disease
then *disease 7→ 1/disease+
else *+}

: Symptom→M Disease

0 1 2 3

1

2

3

6

Measure semantics

JM αK = (α→ R)→ R

J*A 7→ 1/2,B 7→ 1/2+K = λc.
c(A)

2
+

c(B)
2

Jreturn (symptom, disease)K = λc. c(symptom, disease)

= J*(symptom, disease) 7→ 1+K

Juniform 1 3K = λc.
∫ 3

1

c(x)
2

dx

JlebesgueK = λc.
∫ ∞
−∞

c(x) dx

Jdo {x¢m; k}K = λc. JmK(λx. JkKc)
u

v
do {d¢ uniform 1 3;

s¢ uniform 0 d;
return (s, d)}

}

~ = λc.
∫ 3

1

∫ d

0

c(s, d)
2 · d ds dd

6

Measure semantics

JM αK = (α→ R)→ R

J*A 7→ 1/2,B 7→ 1/2+K = λc.
c(A)

2
+

c(B)
2

Jreturn (symptom, disease)K = λc. c(symptom, disease)

= J*(symptom, disease) 7→ 1+K

Juniform 1 3K = λc.
∫ 3

1

c(x)
2

dx

JlebesgueK = λc.
∫ ∞
−∞

c(x) dx

Jdo {x¢m; k}K = λc. JmK(λx. JkKc)

u

v
do {d¢ uniform 1 3;

s¢ uniform 0 d;
return (s, d)}

}

~ = λc.
∫ 3

1

∫ d

0

c(s, d)
2 · d ds dd

6

Measure semantics

JM αK = (α→ R)→ R

J*A 7→ 1/2,B 7→ 1/2+K = λc.
c(A)

2
+

c(B)
2

Jreturn (symptom, disease)K = λc. c(symptom, disease)

= J*(symptom, disease) 7→ 1+K

Juniform 1 3K = λc.
∫ 3

1

c(x)
2

dx

JlebesgueK = λc.
∫ ∞
−∞

c(x) dx

Jdo {x¢m; k}K = λc. JmK(λx. JkKc)
u

v
do {d¢ uniform 1 3;

s¢ uniform 0 d;
return (s, d)}

}

~ = λc.
∫ 3

1

∫ d

0

c(s, d)
2 · d ds dd

7

Disintegration speci�cation

JmK = Jdo {s¢ lebesgue; d¢ k; return (s, d)}K

m = do {d¢ uniform 1 3;
s¢ uniform 0 d;
return (s, d)}

k = do {d¢ uniform 1 3;
if 0 ≤ s ≤ d

then *d 7→ 1/d+
else *+}

JkK = λc.
∫ 3

1

if 0 ≤ s ≤ d then
c(d)
d

else 0

2
dd

Jdo {s¢ lebesgue; d¢ k; return (s, d)}K

= λc.
∫ ∞
−∞

∫ 3

1

if 0 ≤ s ≤ d then
c(s, d)

d
else 0

2
dd ds

= λc.
∫ 3

1

∫ d

0

c(s, d)
2 · d ds dd = JmK

7

Disintegration speci�cation

JmK = Jdo {s¢ lebesgue; d¢ k; return (s, d)}K

m = do {d¢ uniform 1 3;
s¢ uniform 0 d;
return (s, d)}

k = do {d¢ uniform 1 3;
if 0 ≤ s ≤ d

then *d 7→ 1/d+
else *+}

JkK = λc.
∫ 3

1

if 0 ≤ s ≤ d then
c(d)
d

else 0

2
dd

Jdo {s¢ lebesgue; d¢ k; return (s, d)}K

= λc.
∫ ∞
−∞

∫ 3

1

if 0 ≤ s ≤ d then
c(s, d)

d
else 0

2
dd ds

= λc.
∫ 3

1

∫ d

0

c(s, d)
2 · d ds dd = JmK

7

Disintegration speci�cation

JmK = Jdo {s¢ lebesgue; d¢ k; return (s, d)}K

m = do {d¢ uniform 1 3;
s¢ uniform 0 d;
return (s, d)}

k = do {d¢ uniform 1 3;
if 0 ≤ s ≤ d

then *d 7→ 1/d+
else *+}

JkK = λc.
∫ 3

1

if 0 ≤ s ≤ d then
c(d)
d

else 0

2
dd

Jdo {s¢ lebesgue; d¢ k; return (s, d)}K

= λc.
∫ ∞
−∞

∫ 3

1

if 0 ≤ s ≤ d then
c(s, d)

d
else 0

2
dd ds

= λc.
∫ 3

1

∫ d

0

c(s, d)
2 · d ds dd = JmK

8

Useful but unspeci�ed and thus unautomated before

22 C. ANDRIEU ET AL.

proposal distribution for j = 1, . . . , n

q
(

x⋆
∣

∣ x (i)) =
{

p
(

x⋆
j

∣

∣ x (i)
− j

)

If x⋆
− j = x (i)

− j

0 Otherwise.

The corresponding acceptance probability is:

A
(

x (i), x⋆
)

= min

{

1,
p(x⋆)q

(

x (i)
∣

∣ x⋆
)

p
(

x (i)
)

q
(

x⋆|x (i)
)

}

= min

{

1,
p(x⋆)p

(

x (i)
j

∣

∣ x (i)
− j

)

p
(

x (i)
)

p(x⋆
j |x⋆

− j)

}

= min

{

1,
p
(

x⋆
− j

)

p
(

x (i)
− j

)

}

= 1.

That is, the acceptance probability for each proposal is one and, hence, the deterministic
scan Gibbs sampler algorithm is often presented as shown in figure 12.

Since the Gibbs sampler can be viewed as a special case of the MH algorithm, it is
possible to introduce MH steps into the Gibbs sampler. That is, when the full conditionals
are available and belong to the family of standard distributions (Gamma, Gaussian, etc.),
we will draw the new samples directly. Otherwise, we can draw samples with MH steps
embedded within the Gibbs algorithm. For n = 2, the Gibbs sampler is also known as the
data augmentation algorithm, which is closely related to the expectation maximisation (EM)
algorithm (Dempster, Laird, & Rubin, 1977; Tanner & Wong, 1987).

Directed acyclic graphs (DAGS) are one of the best known application areas for Gibbs
sampling (Pearl, 1987). Here, a large-dimensional joint distribution is factored into a directed
graph that encodes the conditional independencies in the model. In particular, if x pa(j)

Figure 12. Gibbs sampler.

Borel paradox

9

Radio Yerevan

Question: Is it correct that Grigori Grigorievich Grigoriev won a
luxury car at the All-Union Championship in Moscow?

Answer: In principle, yes.
But �rst of all it was not Grigori Grigorievich

Grigoriev, but Vassili Vassilievich Vassiliev.
Second, it was not at the All-Union Championship

in Moscow, but at a Collective Farm Sports Festival in
Smolensk.

Third, it was not a car, but a bicycle.
And fourth he didn’t win it, but rather it was stolen

from him.

10

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.

But �rst of all it is not an evaluator, but a partial
evaluator.

Second, it not only evaluates terms, but also
performs random choices.

Third, it not only produces outcomes and values,
but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : dαe → H→ (α× H)

perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc
constrain-value : dαe → bαc → H→ (H→ bM γc)→ bM γc

constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

10

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.

Second, it not only evaluates terms, but also
performs random choices.

Third, it not only produces outcomes and values,
but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : dαe → H→ (bαc × H)

perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc
constrain-value : dαe → bαc → H→ (H→ bM γc)→ bM γc

constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

10

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.
Second, it not only evaluates terms, but also

performs random choices.

Third, it not only produces outcomes and values,
but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : d αe → H→ (bαc → H→ bM γc)→ bM γc
perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc

constrain-value : d αe → bαc → H→ (H→ bM γc)→ bM γc
constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

10

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.
Second, it not only evaluates terms, but also

performs random choices.
Third, it not only produces outcomes and values,

but also constrains them.

And fourth it doesn’t produce one term, but
searches for a random variable to constrain.

evaluate : d αe → H→ (bαc → H→ bM γc)→ bM γc
perform : dM αe → H→ (bαc → H→ bM γc)→ bM γc

constrain-value : d αe → bαc → H→ (H→ bM γc)→ bM γc
constrain-outcome : dM αe → bαc → H→ (H→ bM γc)→ bM γc

10

Automatic disintegrator

Question: Is it correct that our disintegrator is a lazy evaluator?

Answer: In principle, yes.
But �rst of all it is not an evaluator, but a partial

evaluator.
Second, it not only evaluates terms, but also

performs random choices.
Third, it not only produces outcomes and values,

but also constrains them.
And fourth it doesn’t produce one term, but

searches for a random variable to constrain.

evaluate : d αe → H→ (bαc → H→ {bM γc})→ {bM γc}
perform : dM αe → H→ (bαc → H→ {bM γc})→ {bM γc}

constrain-value : d αe → bαc → H→ (H→ {bM γc})→ {bM γc}
constrain-outcome : dM αe → bαc → H→ (H→ {bM γc})→ {bM γc}

11

Automatic disintegrator in action

[]
perform (do {d¢ uniform 1 3; s¢ uniform 0 d; return (s, d)})

[d′ ¢ uniform 1 3]
perform (do {s¢ uniform 0 d′; return (s, d′)})

[d′ ¢ uniform 1 3; s′ ¢ uniform 0 d′]
perform (return (s′, d′))
evaluate (s′, d′)⇒ (s′, d′)

constrain-value s′ s
constrain-outcome (uniform 0 d′) s

nondeterminism
evaluate 0⇒ 0
evaluate d′

perform (uniform 1 3)
do {d′′ ¢ uniform 1 3; �}⇒ d′′

[let d′ = d′′; s′ ¢ uniform 0 d′]⇒ d′′
if 0 ≤ s ≤ d′′ then do {()¢ *() 7→ 1/d′′ + ; �} else * +

[let d′ = d′′; let s′ = s]

11

Automatic disintegrator in action

[]
perform (do {d¢ uniform 1 3; s¢ uniform 0 d; return (s, d)})

[d′ ¢ uniform 1 3]
perform (do {s¢ uniform 0 d′; return (s, d′)})

[d′ ¢ uniform 1 3; s′ ¢ uniform 0 d′]
perform (return (s′, d′))
evaluate (s′, d′)⇒ (s′, d′)

constrain-value s′ s
constrain-outcome (uniform 0 d′) s

nondeterminism
evaluate 0⇒ 0
evaluate d′

perform (uniform 1 3)
do {d′′ ¢ uniform 1 3; �}⇒ d′′

[let d′ = d′′; s′ ¢ uniform 0 d′]⇒ d′′
if 0 ≤ s ≤ d′′ then do {()¢ *() 7→ 1/d′′ + ; �} else * +

[let d′ = d′′; let s′ = s]

11

Automatic disintegrator in action

[]
perform (do {d¢ uniform 1 3; s¢ uniform 0 d; return (s, d)})

[d′ ¢ uniform 1 3]
perform (do {s¢ uniform 0 d′; return (s, d′)})

[d′ ¢ uniform 1 3; s′ ¢ uniform 0 d′]
perform (return (s′, d′))
evaluate (s′, d′)⇒ (s′, d′)

constrain-value s′ s
constrain-outcome (uniform 0 d′) s

nondeterminism
evaluate 0⇒ 0
evaluate d′

perform (uniform 1 3)
do {d′′ ¢ uniform 1 3; �}⇒ d′′

[let d′ = d′′; s′ ¢ uniform 0 d′]⇒ d′′
if 0 ≤ s ≤ d′′ then do {()¢ *() 7→ 1/d′′ + ; �} else * +

[let d′ = d′′; let s′ = s]

12

Determinism requires inversion

do {d¢ uniform 0 1;
s¢ return (2 · d);
return (s, d)}

do {d1 ¢ uniform 0 1;
d2 ¢ uniform 0 1;
s¢ return (d1 + d2);
return (s, (d1, d2))}

do {d1 ¢ uniform 0 1;
d2 ¢ *1 7→ 1/2, 2 7→ 1/2 + ;
s¢ return dd2

1 ;
return (s, (d1, d2))}

12

Determinism requires inversion

do {d¢ uniform 0 1;
s¢ return (2 · d);
return (s, d)}

do {d1 ¢ uniform 0 1;
d2 ¢ uniform 0 1;
s¢ return (d1 + d2);
return (s, (d1, d2))}

do {d1 ¢ uniform 0 1;
d2 ¢ *1 7→ 1/2, 2 7→ 1/2 + ;
s¢ return dd2

1 ;
return (s, (d1, d2))}

12

Determinism requires inversion

do {d¢ uniform 0 1;
s¢ return (2 · d);
return (s, d)}

do {d1 ¢ uniform 0 1;
d2 ¢ uniform 0 1;
s¢ return (d1 + d2);
return (s, (d1, d2))}

do {d1 ¢ uniform 0 1;
d2 ¢ *1 7→ 1/2, 2 7→ 1/2 + ;
s¢ return dd2

1 ;
return (s, (d1, d2))}

13

Summary

I Observe symptoms with hidden causes

I Infer probabilities by program transformations

I Specify disintegration by measure semantics

I Automate disintegration by lazy partial evaluation

I Future work: arrays (symbolically evaluated)
beyond lebesgue
prove correctness
computer algebra — please help!

