
APLicative Programming with

Naperian Functors

Jeremy Gibbons

WG2.11#16, August 2016

APLicative Programming with Naperian Functors 2

1. Arrays in APL and J

Scalar operation

square 3 � 9

is lifted implicitly to vectors:

square 1 2 3 � 1 4 9

and to matrices:

square
1 2 3
4 5 6
7 8 9

�
1 4 9

16 25 36
49 64 81

and to cuboids, etc:

square 1 2

3 4

5 6

8 � 1 4

9 16

25 36

64

APLicative Programming with Naperian Functors 3

Binary operators

Similarly, binary operators act not only on scalars:

1 � 4 � 5

but also on vectors:

1 2 3 � 4 5 6 � 5 7 9

and on matrices:

1 2
3 4

� 5 6
7 8

� 6 8
10 12

and so on.

APLicative Programming with Naperian Functors 4

Reductions and scans

Similarly for operations that are not simply pointwise.

The sum and prefix sums functions on vectors:

sum 1 2 3 � 6

sums 1 2 3 � 1 3 6

lift to act on the rows of a matrix:

sum 1 2 3
4 5 6

� 6
15

sums 1 2 3
4 5 6

� 1 3 6
4 9 15

APLicative Programming with Naperian Functors 5

Reranking

J provides a reranking operator "1 allowing action instead on the columns
of a matrix:

sum "1
1 2 3
4 5 6

� sum �transpose 1 2 3
4 5 6

� � sum
1 4
2 5
3 6

� 5 7 9

sums "1
1 2 3
4 5 6

� transpose �sums �transpose 1 2 3
4 5 6

��

� transpose �sums
1 4
2 5
3 6

� � transpose
1 5
2 7
3 9

� 1 2 3
5 7 9

APLicative Programming with Naperian Functors 6

Alignment

The arguments of a binary operator need not have the same rank:
lower-ranked argument is implicitly lifted to align with higher-ranked.

For example, one can add a scalar and a vector:

3� 4 5 6 � 3 3 3 � 4 5 6 � 7 8 9

or a vector and a matrix:

1 2 3 � 4 5 6
7 8 9

� 1 2 3
1 2 3

� 4 5 6
7 8 9

� 5 7 9
8 10 12

The shapes at common ranks must match.

APLicative Programming with Naperian Functors 7

2. Typing rank polymorphism

In APL and J, shape checking
is dynamic.

Recent work by Slepak et al.
on Remora, a language with a
static type system for shape
checking.

An Array-Oriented Language with Static Rank

Polymorphism

Justin Slepak, Olin Shivers, and Panagiotis Manolios

Northeastern University
{jrslepak,shivers,pete}@ccs.neu.edu

Abstract. The array-computational model pioneered by Iverson’s lan-
guages APL and J offers a simple and expressive solution to the “von
Neumann bottleneck.” It includes a form of rank, or dimensional, poly-
morphism, which renders much of a program’s control structure im-
plicit by lifting base operators to higher-dimensional array structures.
We present the first formal semantics for this model, along with the first
static type system that captures the full power of the core language.

The formal dynamic semantics of our core language, Remora, illu-
minates several of the murkier corners of the model. This allows us to
resolve some of the model’s ad hoc elements in more general, regular
ways. Among these, we can generalise the model from SIMD to MIMD
computations, by extending the semantics to permit functions to be lifted
to higher-dimensional arrays in the same way as their arguments.

Our static semantics, a dependent type system of carefully restricted
power, is capable of describing array computations whose dimensions
cannot be determined statically. The type-checking problem is decidable
and the type system is accompanied by the usual soundness theorems.
Our type system’s principal contribution is that it serves to extract the
implicit control structure that provides so much of the language’s expres-
sive power, making this structure explicitly apparent at compile time.

1 The Promise of Rank Polymorphism

Behind every interesting programming language is an interesting model of com-
putation. For example, the lambda calculus, the relational calculus, and finite-
state automata are the computational models that, respectively, make Scheme,
SQL and regular expressions interesting programming languages. Iverson’s lan-
guage APL [7], and its successor J [10], are interesting for this very reason. That
is, they provide a notational interface to an interesting model of computation:
loop-free, recursion-free array processing, a model that is becoming increasingly
relevant as we move into an era of parallel computation.

APL and J’s array-computation model is important for several reasons. First,
the model provides a solution to Backus’s “von Neumann bottleneck” [1]. In-
stead of using iteration or recursion, all operations are automatically aggregate
operations. This lifting is the fundamental control flow mechanism. The iteration
space associated with array processing is reified as the shape of the arrays being

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 27–46, 2014.
c⃝ Springer-Verlag Berlin Heidelberg 2014

APLicative Programming with Naperian Functors 8
An Array-Oriented Language with Static Rank Polymorphism 41

e ::= α | x | (e e′ . . .) | (Tλ [x . . .] e) | (T-APP e τ . . .) (exressions)

| (Iλ [(x γ) . . .] e) | (I-APP e ι . . .) | (PACK ι . . . e)τ | (UNPACK (⟨x . . . |y⟩ = e) e′)
α ::= [l . . .]τ | [l l ′ . . .]ι (arrays)

l ::= b | f | e | (Tλ [x . . .] l) | (T-APP l τ . . .) | (Iλ [(x γ) . . .] l) (array elements)

| (I-APP l ι . . .)

f ::= π | (λ [(x τ) . . .] e) (functions)

τ, σ ::= B | x | Aιτ | (τ . . . → σ) | (∀ [x . . .] τ) | (Π [(x γ) . . .] τ) (types)

| (Σ [(x γ) . . .] τ)

ι, κ ::= n | x | (S ι . . .) | (+ ι κ) (indices)

γ ::= Nat | Shape (index sorts)

z ∈ Z (numbers)

n, m ∈ N
v ::= [b . . .]τ | [f . . .]τ | b | f | (Tλ [x . . .] l) | (Iλ [(x γ) . . .] l) (value forms)

| (PACK ι . . . v) | [(PACK ι . . . v) . . .]A(S m n ...)τ

E ::= ! | (v . . . E e . . .) | [v . . . E l . . .]τ | (T-APP E τ . . .) (evaluation contexts)

| (I-APP E ι . . .) | (PACK ι . . . E)τ | (UNPACK (⟨x . . . |y⟩ = E) e)

Γ ::= · | Γ, (x : τ) (type environments)

∆ ::= · | ∆, x (kind environments)

Θ ::= · | Θ, (x :: γ) (sort environments)

Fig. 6. Syntax for Remora

and K-DProd and K-DSum bind index variables at specific sorts. A variable
introduced in a universal type is only allowed to stand for a non-array type. This
is necessary in order to express polymorphic input types like “any scalar,” A(S)t

(with t bound by some ∀). Otherwise, A(S)t could describe any array type.
S-Shape requires that a shape be built from Nats. Constructing an index

with + requires that the summands be Nats, and the result will also be a Nat.
T-App must identify the frame associated with an application form, which

requires identifying the frames associated with the individual terms in the ap-
plication form. Recall that for a map reduction, the frames of every term in
the application must be the same, and for a lift reduction, there must be one
frame which is prefixed by every other frame. Once every term’s frame has been
determined, the next step is to find the largest frame, with the order given by
x ⊑ y iff x is a prefix of y. This will be the frame into which the results of the
lifted function will be assembled. If the set of frames has no maximum, then the
function application term is ill-typed.

The type equivalence relation ∼= is a congruence based on relating nested array
types and non-nested array types. An array of type A(S m ...)(A(S n ...)τ) is equiv-
alent to an array of type A(S m ... n ...)τ . This is the transformation which will be
made by a collapse step at run time and suggests that the fully-collapsed ver-
sion of a type is its canonical form. The reverse is analogous to breaking an array

APLicative Programming with Naperian Functors 9
42 J. Slepak, O. Shivers, and P. Manolios

Γ ; ∆; Θ ⊢ l : τ

Γ ;∆;Θ ⊢ num : Num
(T-Num)

(x : τ) ∈ Γ

Γ ;∆;Θ ⊢ x : τ
(T-Var)

τ ∼= σ Γ ;∆;Θ ⊢ l : τ

Γ ;∆;Θ ⊢ l : σ
(T-Equiv)

Γ ;∆;Θ ⊢ lj : τ for each lj ∈ l . . .

Product !n . . . " = Length !elt . . . "
Γ ;∆;Θ ⊢ [l . . .]A(S n ...)τ : A(S n ...)τ

(T-Array)

Γ, (x : τ) . . . ;∆;Θ ⊢ e : σ

Γ ;∆; Θ ⊢ (λ [(x τ) . . .] e) :

(τ . . . → σ)

(T-Abst)

Γ ;∆;Θ ⊢ e : Aι (σ . . . → τ)

Γ ;∆;Θ ⊢ e′
j : Aκj σj for each j

ι′ = Max !ι, κ . . . "
Γ ;∆;Θ ⊢

(
e e′ . . .

)
: Aι′τ

(T-App)

Γ ;∆, x . . . ;Θ ⊢ e : τ

Γ ;∆; Θ ⊢ (Tλ [x . . .] e) :

(∀ [x . . .] τ)

(T-TAbst)

Γ ;∆;Θ ⊢ l : (∀ [x . . .]σ)

∆;Θ ⊢ τj for each j

no τj is an array type

Γ ;∆;Θ ⊢ (T-APP l τ . . .) :

σ[(x ←t τ) . . .]

(T-TApp)

Γ ;∆;Θ, (x :: γ) . . . ⊢ e : τ

Γ ;∆;Θ ⊢ (Iλ [(x) . . .] e) :

(Π [(x γ) . . .] τ)

(T-IAbst)

Γ ;∆;Θ ⊢ e : (Π [(x γ) . . .] τ)

Γ ;∆;Θ ⊢ ιj :: γj for each j

Γ ;∆; Θ ⊢ (I-APP e ι . . .) :

τ [(x ←i ι) . . .]

(T-IApp)

Γ ;∆;Θ ⊢ e : τ [(x ← ι) . . .]

Γ ;∆;Θ ⊢ ιj :: γj for each j

Γ ;∆;Θ ⊢ (PACK ι . . . e) : (Σ [(x γ) . . .] τ)
(T-Pack)

Γ ;∆;Θ ⊢ e : (Σ [(x γ) . . .]σ)

Γ, y : σ; ∆;Θ, (x :: γ) . . . ⊢ e′ : τ

∆;Θ ⊢ τ

Γ ;∆;Θ ⊢
(
UNPACK (⟨x . . . |y⟩ = e) e′) : τ

(T-Unpack)

Fig. 7. Type judgment for Remora

into its cells. This type equivalence allows us to express restrictions on a part of
a function argument’s shape. For example, append has type:

∀[t] Π [(m Nat)(n Nat)(d Shape)](
A(S m) (Ad t)

) (
A(S n) (Ad t)

)
→

(
A(S (+ m n)) (Ad t)

)

In the untyped language, append has argument rank ∞, but it still requires its
arguments to have the same shape except for their first dimensions. Any two

APLicative Programming with Naperian Functors 10
An Array-Oriented Language with Static Rank Polymorphism 43

∆; Θ ⊢ τ

∆;Θ ⊢ B
(K-Base)

x ∈ ∆

∆;Θ ⊢ x
(K-Var)

∆;Θ ⊢ τ

Θ ⊢ ι :: Shape

∆;Θ ⊢ Aιτ
(K-Array)

∆;Θ ⊢ τj for each j ∆;Θ ⊢ σ

∆; Θ ⊢ (τ . . . → σ)
(K-Fun)

∆; Θ, (x :: γ) . . . ⊢ τ

∆;Θ ⊢ (Π [(x γ) . . .] τ)
(K-DProd)

∆;Θ, (x :: γ) . . . ⊢ τ

∆;Θ ⊢ (Σ [(x γ) . . .] τ)
(K-DSum)

∆, x . . . ; Θ ⊢ τ

∆;Θ ⊢ (∀ [x . . .] τ)
(K-Univ)

Θ ⊢ ι :: γ

n ∈ N
Θ ⊢ n :: Nat

(S-Nat)
(x :: γ) ∈ Θ

Θ ⊢ x :: γ
(S-Var)

Θ ⊢ ιj :: Nat for each j

Θ ⊢ (S ι . . .) :: Shape
(S-Shape)

Θ ⊢ ι :: Nat Θ ⊢ κ :: Nat

Θ ⊢ (+ ι κ) :: Nat
(S-Plus)

Fig. 8. Kind and index sort judgments for Remora

array types which have the same atom type and whose shapes differ only in the
first dimension can be described using append’s argument types.

4.3 Dynamic Semantics

The reduction relation is given in Figure 9. It assumes every expression has been
annotated with its type (most of these type annotations can be generated me-
chanically). This run time type information is needed to determine the correct
output cell shape for a function application with an empty frame, so type annota-
tions are kept up to date during reduction (they subsume the untyped language’s
shape tags). We use x[(y ←e z) . . .], x[(y ←t z) . . .], and x[(y ←i z) . . .] for sub-
stitution of term, type, and index variables respectively. The untyped language’s
box and nonscalar array of boxes value forms are replaced with analogous sum
and nonscalar array of sums. We replace the evaluation contexts for box and
unbox with analogous contexts for PACK and UNPACK.

Remora’s β, δ, and collapse rules are essentially unchanged from the untyped
language, so they are not repeated. The implicit lifting is now type-directed,
instead of rank-directed. Types include enough information to determine the
correct cell shape for any application form, solving the empty-frame dilemma
from 3.2 and eliminating the nondeterminism.

Tβ and Iβ substitute types and indices for the appropriate type and index
variables. This substitution must be applied to both the body of the type or index
abstraction as well as to its type annotation. Explicit type and index application

APLicative Programming with Naperian Functors 11
44 J. Slepak, O. Shivers, and P. Manolios

Pointwise application:
(

[f . . .]
A(S nf ...)(A(S na ...)τ ... →τ ′)

v
A(S nf ... na ...)τ

. . .

)A(S nf ... nc ...)τ ′

!→map

[(
[f]A(S)(A(S na ...)τ ... →τ ′) αA(S na ...)τ . . .

)τ ′
. . .

]A(S nf ...)τ ′

where ρ = length
(
nf . . .

)
> 0

((α . . .) . . .) = ((Cellsρ !v") . . .)⊤

Duplicating cells:(
[f . . .]A(S m ...)(A(S n ...)τ ... →τ ′) v

A(S m′ ...)τ
. . .

)σ

!→lift

(
Dup(A(S n ...)τ ... →τ ′),ι

#
[f . . .]

$
DupA(S m′ ...)τ,ι !v " . . .

)σ

where (m . . .), (m′ . . .) . . . not all equal
ι = Max !(m . . .), (m′ . . .) . . . "

Applying a type abstraction:(
T-APP (Tλ [x . . .] eτ)(∀[x ...]τ) σ . . .

)τ [(x ←t σ) ...]
!→Tβ eτ [(x ←t σ) . . .]

Applying an index abstraction:(
I-APP (Iλ [(x γ) . . .] eτ)(Π[(x γ) ...]τ) ι . . .

)τ [(x ←i ι) ...]
!→Iβ eτ [(x ←i ι) . . .]

Projecting from a dependent sum:(
UNPACK

(
⟨x . . . |y⟩ = (PACK ι . . . vτ)τ ′)

eσ
)σ

!→proj eσ [(x ←i ι) . . . (y ←e v)]

Fig. 9. Small-step operational semantics for Remora

effectively replace naturalize steps from the untyped language. Finally, project
substitutes a dependent sum’s witnesses and contents in the body expression.

The sample programs given in section 3.3 are straightforward to express in
Remora. The translation involves adding type and index abstractions and appli-
cations and replacing rank annotations with type annotations.

4.4 Type Soundness

We expect a type system which ascribes shapes to arrays to only ascribe shapes
that the arrays will actually have once computed.

Theorem 1 (Type soundness). If ⊢ l : τ , then one of:

– There is some v such that l "→∗ v

– l diverges

– There exist some E, π, v . . . such that l "→∗ E[((π v . . .))], where ⊢ π :
(σ . . . → σ′), and ⊢ vi : σi for each i

That is, a well-typed program completes, diverges, or produces an error due to
partial primitive operations, such as division by zero.

APLicative Programming with Naperian Functors 12

3. Vectors

Automatic promotion of datatype

data Nat ::� where

Z :: Nat
S :: Nat ! Nat

to kind Nat and type-level naturals 0Z; 0S 0Z; :::.

Then we can define

data Vector :: Nat ! � ! � where

VNil :: Vector 0Z a
VCons :: a ! Vector n a ! Vector �0S n� a

It is now straightforward to define

vmap :: �a ! b�! Vector n a ! Vector n b
vzipWith :: �a ! b ! c�! Vector n a ! Vector n b ! Vector n c

APLicative Programming with Naperian Functors 13

Hasochism

That’s not quite enough for vreplicate, crucial for alignment.

class Natural �n :: Nat�
where vreplicate :: a ! Vector n a

instance Natural 0Z

where vreplicate a � VNil

instance Natural n) Natural �0S n�
where vreplicate a � VCons a �vreplicate a�

APLicative Programming with Naperian Functors 14

4. Applicative functors

Vectors are an applicative functor:

class Functor f) Applicative f where

pure :: a ! f a -- think “replicate”

�~� :: f �a ! b�! f a ! f b -- think “zip with apply”

Not just vectors as dimensions; also eg pairs:

data Pair a � P a a

instance Functor Pair where

fmap f �P x y� � P �f x� �f y�

instance Applicative Pair where

pure x � P x x

P f g ~ P x y � P �f x� �g y�

APLicative Programming with Naperian Functors 15

. . . or block-structured matrices

data Block ::� where

Single :: Block

Join :: Block ! Block ! Block

data BlockVec :: Block ! � ! � where

One :: a ! BlockVec Single a

Plus :: BlockVec m a ! BlockVec n a ! BlockVec �Join m n� a

instance Functor �BlockVec p� where :::
instance Applicative �BlockVec p� where :::

� � � � � � � � � � � � �

Dimensions can have structure!

APLicative Programming with Naperian Functors 16

5. Naperian functors

The Applicative interface is not enough to define transpose, needed for
reranking. Instead:

class Applicative f) Naperian f where

type Log f

lookup :: f a ! �Log f ! a� -- each other’s. . .

tabulate :: �Log f ! a�! f a -- . . . inverses

positions :: f �Log f �

tabulate h � fmap h positions

positions � tabulate id

Then

transpose :: �Naperian f ; Naperian g�) f �g a�! g �f a�
transpose � tabulate � fmap tabulate � flip � fmap lookup � lookup

APLicative Programming with Naperian Functors 17

6. Folding and traversing

To define things like sum, we need

class Foldable t where

foldMap :: Monoid m) �a !m�! �t a !m�

And to define things like sums, we need

class �Functor t; Foldable t�) Traversable t where

traverse :: Applicative f) �a ! f b�! t a ! f �t b�

So we represent acceptable array dimensions as:

class �Naperian f ; Traversable f �) Dimension f

APLicative Programming with Naperian Functors 18

7. Multidimensionality

Hypercuboids are scalars, vectors, matrices. . . a nested datatype:

data Hyper ::� ! � where

Scalar :: a ! Hyper a
Prism :: Natural n) Hyper �Vector n a�! Hyper a

or

data Hyper :: Nat ! � ! � where

Scalar :: a ! Hyper 0Z a
Prism :: Natural n) Hyper r �Vector n a�! Hyper �0S r� a

or (innermost extent first)

data Hyper :: �Nat �! � ! � where

Scalar :: a ! Hyper 0� � a
Prism :: Natural n) Hyper ns �Vector n a�! Hyper �n 0: ns� a

But what about non-vector dimensions?

APLicative Programming with Naperian Functors 19

Beyond vectors

Type index is a type-level list of dimensions:

class Shapely fs where :::
instance Shapely 0� � where :::
instance �Dimension f ; Shapely fs�)

Shapely �f 0: fs� where :::

Then (innermost first again)

data Hyper :: �� ! ��! � ! � where

Scalar :: a ! Hyper 0� � a

Prism :: �Dimension f ; Shapely fs�) Hyper fs �f a�! Hyper �f 0: fs� a

APLicative Programming with Naperian Functors 19

Beyond vectors

Type index is a type-level list of dimensions:

class Shapely fs where rank :: Rank fs

instance Shapely 0� � where rank � RZ

instance �Dimension f ; Shapely fs�)
Shapely �f 0: fs� where rank � RS rank

Then (innermost first again)

data Hyper :: �� ! ��! � ! � where

Scalar :: a ! Hyper 0� � a

Prism :: �Dimension f ; Shapely fs�) Hyper fs �f a�! Hyper �f 0: fs� a

where a Rank denotes the rank of a shape:

data Rank :: �� ! ��! � where

RZ :: Rank 0� �
RS :: �Dimension f ; Shapely fs�) Rank fs ! Rank �f 0: fs�

APLicative Programming with Naperian Functors 20

Hypercuboid operations

Replication and zipping (and hence applicative):

hreplicate :: Rank fs ! a ! Hyper fs a
hreplicate RZ a � Scalar a
hreplicate �RS r� a � Prism �hreplicate r �pure a��

hzipWith :: �a ! b ! c�! Hyper fs a ! Hyper fs b ! Hyper fs c
hzipWith f �Scalar a� �Scalar b� � Scalar �f a b�
hzipWith f �Prism x� �Prism y� � Prism �hzipWith �azipWith f � x y�

Reduction:

reduce :: Monoid m) �a !m�! Hyper �f 0: fs� a ! Hyper fs m
reduce f �Prism x� � fmap �foldMap f � x

and transposition:

transposeHyper :: Hyper �f 0: �g 0: fs�� a ! Hyper �g 0: �f 0: fs�� a
transposeHyper �Prism �Prism x�� � Prism �Prism �fmap transpose x��

APLicative Programming with Naperian Functors 21

7. Alignment

Unary operators via fmap, homogeneous binary via hzipWith.

Heterogeneous binary operators (eg vector with matrix) entail alignment:

class �Shapely fs; Shapely gs�) Alignable fs gs where

align :: Hyper fs a ! Hyper gs a

Shape fs alignable with gs if it is a prefix:

instance Alignable 0� � 0� � where

align � id

instance �Dimension f ; Alignable fs gs�) Alignable �f 0: fs� �f 0: gs� where

align �Prism x� � Prism �align x�

instance �Dimension f ; Shapely fs�) Alignable 0� � �f 0: fs� where

align �Scalar a� � hreplicate rank a

APLicative Programming with Naperian Functors 22

Lifting

Two arguments can be aligned with their common maximum shape:

type family Max �fs :: �� ! ��� �gs :: �� ! ��� :: �� ! ��
type instance Max 0� � 0� � �0 � �
type instance Max 0� � �f 0: gs� � �f 0: gs�
type instance Max �f 0: fs� 0� � � �f 0: fs�
type instance Max �f 0: fs� �f 0: gs� � �f 0: Max fs gs�

Then

binary :: �Shapely fs; Shapely gs; Max fs gs � hs;
Alignable fs hs; Alignable gs hs�)

�a ! b ! c�! �Hyper fs a ! Hyper gs b ! Hyper hs c�
binary f x y � hzipWith f �align x� �align y�

APLicative Programming with Naperian Functors 23

8. Symbolic replication and transposition

data HyperR :: �� ! ��! � ! � where

ScalarR :: a ! HyperR 0� � a
PrismR :: �Dimension f ; Shapely fs�)

HyperR fs �f a�! HyperR �f 0: fs� a
ReplR :: �Dimension f ; Shapely fs�)

HyperR fs a ! HyperR �f 0: fs� a
TransR :: �Dimension f ; Dimension g; Shapely fs�)

HyperR �f 0: g 0: fs� a ! HyperR �g 0: f 0: fs� a

then

rzipWith :: Shapely fs)
�a ! b ! c�! HyperR fs a ! HyperR fs b ! HyperR fs c

rzipWith f �PrismR x� �ReplR y� � PrismR �rzipWith �azipWith1 f � x y�
where azipWith1 f xs y � fmap �‘f ‘y� xs

:::

APLicative Programming with Naperian Functors 24

9. Flat representation

data Flat fs a where

Flat :: Shapely fs) Array Int a ! Flat fs a

flatten :: Shapely fs) Hyper fs a ! Flat fs a

flatten xs � Flat �listArray �0; sizeHyper xs � 1� �elements xs��

where

sizeHyper :: Shapely fs) Hyper fs a ! Int

elements :: Shapely fs) Hyper fs a ! �a�

APLicative Programming with Naperian Functors 25

10. Summary

• typing of APL and J array operations

• explicating the implicit alignment and lifting

• symbolic (constant-time) replication and transposition

• type-safe flat representations

• no need for hand-rolled type system

• not too much pain

O, my offence is rank, it smells to heaven;
It hath the primal eldest curse upon ’t,
A brother’s murder.
William Shakespeare (1564–1616), “Hamlet”, Act III Scene 3

