UNIVERSITY OF

OXFORD

APLiIcative Programming with

Naperian Functors

Jeremy Gibbons
WG2.11#16, August 2016

1. Arrays in APL and J

Scalar operation

square| 3 9

Is lifted implicitly to vectors:

square| 1 2 3 1409

and to matrices:

123 1 4 9
square| 4 5 6 16 25 36
7809 49 64 81

and to cuboids, etc:

5 6 25 36
square| 1 2 |8 1 4 |64
3 4 9 16

Binary operators

Similarly, binary operators act not only on scalars:

1 4)

but also on vectors:

123 456 579

and on matrices;

12 56 6 8
3 4 7 8 10 12

and so on.

Reductions and scans

Similarly for operations that are not simply pointwise.

The sum and prefix sums functions on vectors:

sum 123 6

sums| 12 3 136

lift to act on the rows of a matrix;:

123 6
sum 456 15

123 13 6
Sums456 4 9 15

Reranking

J provides a reranking operator ''; allowing action instead on the columns
of a matrix:

14
v | 123 123
sum sum transpose sum| 2 5 579
456 456
36
o | 123 123
sums 1|, o, transpose sums transpose 45 6
14 15 1 o 3
transpose sums| 2 5 transpose | 2 7 S
36 39

Alignment

The arguments of a binary operator need not have the same rank:
lower-ranked argument is implicitly lifted to align with higher-ranked.

For example, one can add a scalar and a vector:

3 45 6 333 45 6 7809

or a vector and a matrix:

456 123 456 5 7 9
789 123 789 8 10 12

123

The shapes at common ranks must match.

APLicative Programming with Naperian Functors

2. Typing rank polymorphism

In APL and J, shape checking
IS dynamic.

Recent work by Slepak et al.
on Remora, a language with a
static type system for shape
checking.

An Array-Oriented Language with Static Rank
Polymorphism

Justin Slepak, Olin Shivers, and Panagiotis Manolios

Northeastern University
{jrslepak,shivers,pete}@ccs.neu.edu

Abstract. The array-computational model pioneered by Iverson’s lan-
guages APL and J offers a simple and expressive solution to the “von
Neumann bottleneck.” It includes a form of rank, or dimensional, poly-
morphism, which renders much of a program’s control structure im-
plicit by lifting base operators to higher-dimensional array structures.
‘We present the first formal semantics for this model, along with the first
static type system that captures the full power of the core language.
The formal dynamic semantics of our core language, Remora, illu-
minates several of the murkier corners of the model. This allows us to
resolve some of the model’s ad hoc elements in more general, regular
ways. Among these, we can generalise the model from SIMD to MIMD
computations, by extending the semantics to permit functions to be lifted
to higher-dimensional arrays in the same way as their arguments.
Our static semantics, a dependent type system of carefully restricted

power, is capable of describing array computations whose dimensions
cannot be determined statically. The type-checking problem is decidable
and the type system is accompanied by the usual soundness theorems.
Our type system’s principal contribution is that it serves to extract the
implicit control structure that provides so much of the language’s expres-
sive power, making this structure explicitly apparent at compile time.

1 The Promise of Rank Polymorphism

Behind every interesting programming language is an interesting model of com-
putation. For example, the lambda calculus, the relational calculus, and finite-
state automata are the computational models that, respectively, make Scheme,
SQL and regular expressions interesting programming languages. Iverson’s lan-
guage APL (7], and its successor J [10], are interesting for this very reason. That
is, they provide a notational interface to an interesting model of computation:
loop-free, recursion-free array processing, a model that is becoming increasingly
relevant as we move into an era of parallel computation.

APL and J’s array-computation model is important for several reasons. First,
the model provides a solution to Backus’s “von Neumann bottleneck” [1]. In-
stead of using iteration or recursion, all operations are automatically aggregate
operations. This lifting is the fundamental control flow mechanism. The iteration
space associated with array processing is reified as the shape of the arrays being

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 27-46, 2014.
© Springer-Verlag Berlin Heidelberg 2014

APLicative Programming with Naperian Functors

e =alz]|(ee ...) | (TA[z...]e) | (T-APP eT ...) (exressions)
| (IX[(z~) ...]e) | (I-APP e¢...) | (PACK ¢ ...)7 | (UNPACK ({z ... |y) =€) €’)
a =[] U (arrays)
! =b | flel| (TA[x...]0) | (T-APP 7 ...) | (IA[(z) ...]1) (array elements)
| (I-APP [¢ ...)
f uo=a| A[(z7)...] e) (functions)
7o =B |z |AT| (... 20)| V[z...]T) | I[(x~y)...]T) (types)
(Sl -] 7)
Lk w=n x| (Se...) | (+tkK) (indices)
v = Nat | Shape (index sorts)
z € Z (numbers)
n,m € N
v =0T e] (T[]0 | (IX[(zy) ..]0) (value forms)
| (PACK ¢ ... v) | [(PACK ¢ ... v) ...]J"smn.OT
E =0 ... Ee...) | [v... El...]" | (T-APPE T ...) (evaluation contexts)
| (I-APP E ¢ ...) | (PACK ¢... E)” | (UNPACK ((z ... |y) =FE) e)
r «=.|I,(z:7) (type environments)
A = | Az (kind environments)
e =0, (r:y) (sort environments)

Fig. 6. Syntax for Remora

APLicative Programming with Naperian Functors

;00107

(T-Nuw) _(mimenlr
I'; A; 0 F num : Num IRPANCH N B s

(T-Var)

I'iA;©F 1l :7 foreach Iy €l ...

TXo A0k T Product [n ...] = Length [elt ...]

(T-Equiv) i (T-ARRAY)
I'yA;0OF Lo DAL]56m 0T s gy)T
I'A;0ke:p(oc... =>71)
I'; A0 F e; tAg 05 foreachj
I(z: .. A0k e =M VKo
(z:7) e:o (T-Abst) L az v,k ...] (T-App)
;A0 (MN(z71) ...]e): A0k (ee ...) tAyT
(... =2 0)
;A0 (V...]o)
A;0F 1; for each j
I'yAjz ...;0kFe:T (T—TABST) no 7; is an array type (T—TAPP)
I'A;OF(TA [z ...] e): ' A;©OF (T-APP I T ...):
[z ...]7) ol(z ¢ 7)...]
IiA0Fe:(II[(zy)...]7)
I'; 4,0, (z .. F A0 F 05 0y 1 h j
(@ :7) ¢ (T-IABST) 0 oreath) (T-1APP)
I; A0 (IX [(z) ...] e): I'A;©OF (I-APP et ...)
(I(z~)...]7) (& ie)]

A0k e:7[(z 1) ...
I';A;©F iy for each j

(T-PACK)
'y A;OF (PACK e ... e): (X [(zy)...]7)
A0k e: (2 [(zy) ...]o
Ty:0;4,0,(z::7)...Fe 7
A,OFT
(T-UNPACK)

I';A;0©F (UNPACK ({(z ... ly)=e) e) i 7

Fig. 7. Type judgment for Remora

A;OF T

A;OFT
cA © I ¢ :: Shape
———— (K-BASE) e (K-VAR) ‘ P (K-ARRAY)
A;0OFB A;OF A;OF AT
A;OF 75 f h j A0+ A0, (x ... F
Ty T J 7 (K-Fun) @ 7) . (K-DProp)
A0 (... = o0) A0 (T [(zy)...] 1)
A0, (xiy) ... F Az ...;0F
@ 7) T (K-DSum) ’ T (K-UN1V)
A0 (X () ...] 1) A0V [z ...] T)
OF:iy
€N ny) €6 O F ¢; :: Nat for each j
" (S-NaT) =1€d (S-VAR) b ot . (S-SHarE)
O F n :: Nat OFz:y O F (St ...):: Shape

O F (:: Nat O F k :: Nat

(S-PLUS)
O F (4 ¢ k) :: Nat

Fig. 8. Kind and index sort judgments for Remora

APLicative Programming with Naperian Functors

Pointwise application:

([f “']A(s np o) B ma T 2T R)T '“)A(s npoone..)

/

/
T

= map

/ A T

where p = length (ng ...) >0
(a...)...)=((Cells, [v]) ...)"

Duplicating cells:
([f .. .]A(s m---)(A(S n..)T —)T’) ’UA(S m!)7‘ N)

= Lift (Dup(A(Snm)T...—)T’),L [[[f H] DupA(Sm/m)T,L [[’U]] "')U
where (m ...),(m/ ...) ... not all equal
t=Maz[(m ...),(m" ...)...]

Applying a type abstraction:

(T—APP (TA[z ...]en)VlE1m) o

T[(z «—¢ o) ...]
) ! =T eT[(CC <t O')]

Applying an index abstraction:

(I-APP (IX[(z7) ...] er)(ﬂ[(x 7).17) .”>T[(w —it) ...]

=g el (i) ...

Projecting from a dependent sum: -
/
(UNPACK ((x ... lyy=(PACK ¢ ... v7)7) e") Horoj €7 (& =i L) ... (Y e V)]

Fig. 9. Small-step operational semantics for Remora

11

APLicative Programming with Naperian Functors

3. Vectors

Automatic promotion of datatype

data Nat :: where
Z:: Nat
S ::Nat T Nat
to kind Nat and type-level naturals ;% %; :::.
Then we can define
data Vector :: Nat 1 I where

VNIl Vector %7 a
VCons::a ¥ Vectorna ¥ Vector Sn a

It is now straightforward to define

vmap @ al¥b ¥ Vectorna ¥ Vectornb
vzipWith:: a ¥ b ¥ ¢ ¥ Vectorna ¥ Vector nb ¥ Vector nc

12

APLicative Programming with Naperian Functors

Hasochism

That’s not quite enough for vreplicate, crucial for alignment.

class Natural n:: Nat
where vreplicate::a ¥ Vector na

instance Natural %Z
where vreplicate a VNIl
instance Natural n) Natural %S n
where vreplicate a VCons a vreplicate a

13

APLicative Programming with Naperian Functors

4. Applicative functors

Vectors are an applicative functor:

class Functor f) Applicative f where
pure::a ¥ f a -- think “replicate”
® =«f alb ¥Tfalfb - think“zipwithapply”

Not just vectors as dimensions; also eg pairs:

dataPaira P aa

Instance Functor Pair where
fmapf Pxy P fx fy

iInstance Applicative Pair where
pure x P X X
PfgePxy P fx gy

APLicative Programming with Naperian Functors

...or block-structured matrices

data Block :: where

Single :: Block

Join ::Block ¥ Block ¥ Block
data BlockVec :: Block 1 T where

One:a ! BlockVec Single a
Plus :: BlockVec m a Y BlockVec na ¥ BlockVec Joinmn a

iInstance Functor BlockVec p where ::
iInstance Applicative BlockVec p where :::

Dimensions can have structure!

15

APLicative Programming with Naperian Functors

5. Naperian functors

The Applicative interface is not enough to define transpose, needed for
reranking. Instead:

class Applicative f) Naperian f where

type Log f
lookup .fal Logf ¥ a --eachother’s...
tabulate :: Logf T a ¥ fa - ...Inverses

positions :f Logf

tabulate h fmap h positions
positions tabulate id

Then

transpose :: Naperian f;Naperiang)f ga ¥ g fa
transpose tabulate fmap tabulate flip fmap lookup lookup

16

APLicative Programming with Naperian Functors

6. Folding and traversing

To define things like sum, we need

class Foldable t where
foldMap: :Monoidm) aI®Im ¥ ta®m

And to define things like sums, we need

class Functor t;Foldablet) Traversable t where
traverse :: Applicativef) a ¥ fb ¥talf tb

So we represent acceptable array dimensions as:

class Naperian f; Traversable f) Dimension f

17

APLicative Programming with Naperian Functors

7. Multidimensionality

Hypercuboids are scalars, vectors, matrices. .. a nested datatype:

data Hyper :: T where
Scalar :: al Hyper a
Prism :: Natural n) Hyper Vector na 1 Hyper a
or
data Hyper :: Nat ¥ ¥ where
Hyper Z a

Scalar :: al
Prism :: Natural n) Hyper r Vectorna ! Hyper Sr a

or (innermost extent first)

data Hyper ;. Nat ¥ ¥ where

Scalar :: al
Prism :: Natural n) Hyper ns Vector na ¥ Hyper n%ns

Hyper ° a

But what about non-vector dimensions?

18

APLicative Programming with Naperian Functors

Beyond vectors

Type index is a type-level list of dimensions:

class Shapely fs where :::

instance Shapely ° where :::

instance Dimension f;Shapely fs)
Shapely f%fs where :

Then (innermost first again)

data Hyper :: | L ¥ where
Scalar :: al

Prism :: Dimension f;Shapely fs) Hyper fs fa ¥ Hyper f%fs a

Hyper °

a

19

APLicative Programming with Naperian Functors

Beyond vectors

Type index is a type-level list of dimensions:

class Shapely fs where rank :: Rank fs
instance Shapely ° where rank RZ
instance Dimension f;Shapely fs)

Shapely f%fs where rank RS rank

Then (innermost first again)

data Hyper :: | L ¥ where
Scalar :: al Hyper ° a
Prism :: Dimension f;Shapely fs) Hyper fs fa ¥ Hyper f%fs a

where a Rank denotes the rank of a shape:

data Rank :: | ¥ where
RZ :: Rank °
RS :: Dimension f;Shapely fs) Rank fs ¥ Rank f ¢ fs

19

APLicative Programming with Naperian Functors 20

Hypercuboid operations

Replication and zipping (and hence applicative):

hreplicate :: Rank fs ¥ a ¥ Hyper fs a

hreplicate RZ a Scalar a

hreplicate RSr a Prism hreplicate r pure a

hzipWith:: a ¥ b ¥ ¢ Y Hyper fsa ¥ Hyper fsb ¥ Hyper fsc
hzipwith f Scalar a Scalar b Scalar f ab

hzipWith f Prismx Prismy Prism hzipWith azipWithf xvy

Reduction:

reduce::MonoidmY) a ® m ¥ Hyper f%fs a ¥ Hyper fs m
reduce f Prism x fmap foldMap f X

and transposition:

transposeHyper ::Hyper f% g%fs a ¥ Hyper g% f%fs a
transposeHyper Prism Prism X Prism Prism fmap transpose X

APLicative Programming with Naperian Functors 21

7. Alignment

Unary operators via fmap, homogeneous binary via hzipWith.

Heterogeneous binary operators (eg vector with matrix) entail alignment:

class Shapely fs; Shapely gs) Alignable fs gs where
align :: Hyper fsa ¥ Hyper gs a

Shape fs alignable with gs if it is a prefix:

0 where

instance Alignable °
align id

instance Dimension f; Alignable fs gs) Alignable f%fs f%gs where
align Prism x Prism align x

instance Dimension f; Shapely fs) Alignable ° f % fs where
align Scalar a hreplicate rank a

APLicative Programming with Naperian Functors
Lifting

Two arguments can be aligned with their common maximum shape:

type family Max fs:: | gs :: | :: |
type instance Max ? 0 0

type instance Max ? f%gs f%gs

type instance Max f%fs ¢ fofs

type instance Max f%fs f%gs f % Max fs gs
Then

binary :: Shapely fs; Shapely gs; Max fs gs hs;

Alignable fs hs; Alignable gs hs)

alpb¥c Y Hyperfsa ! Hyper gsb ¥ Hyper hsc
binary f xy hzipWith f alignx aligny

22

APLicative Programming with Naperian Functors

8. Symbolic replication and transposition

data HyperR :: | L ¥ where
ScalarR::a I HyperR® a
PrismR :: Dimension f; Shapely fs)
HyperRfs fa 1 HyperR f%fs a
ReplR :: Dimension f;Shapely fs)
HyperR fs a I HyperR f%fs a

TransR :: Dimension f; Dimension g; Shapely fs)
HyperR f%g%fs a ! HyperR g%f%fs a
then

rzipWith :: Shapely fs)
alb¥c Y HyperRfsa ¥ HyperRfsb ¥ HyperR fsc

rzipWith f PrismR x ReplRYy PrismR rzipWith azipWith, f xvy
where azipWith; f xsy fmap ‘f‘y xs

23

APLicative Programming with Naperian Functors
9. Flat representation

data Flat fs a where
Flat :: Shapely fs) Array Int a ¥ Flat fs a

flatten :: Shapely fs) Hyper fsa ¥ Flat fs a

flatten xs Flat listArray O;sizeHyper xs
where

sizeHyper :: Shapely fs) Hyper fsa 1 Int

elements :: Shapely fs) Hyperfsa ¥ a

1

elements xs

24

10. Summary

e typing of APL and J array operations
e explicating the implicit alignment and lifting
e symbolic (constant-time) replication and transposition

e type-safe flat representations

e No need for hand-rolled type system

e NOt too much pain

O, my offence is rank, it smells to heaven;

It hath the primal eldest curse upon 't,

A brother’s murder.

William Shakespeare (1564-1616), “Hamlet”, Act Ill Scene 3

