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Dependable Applications

* Dependability [Avizienis et al, 2004] includes the following
attributes

— Safety: absence of catastrophic consequences on the user(s)
and the environment

— Availability: readiness for correct service
— Reliability: continuity of correct service

* Need of a certification process
— Safety analysis

— Specification of the functional and non-functional
requirements (e.g., fault tolerance, QoS)

— Conformance across the development stages (requirements
traceability)



Case Study: an Avionics Flight
Guidance Application

* Risk analysis = Design Assurance Level (DAL) = A
* Definition of the requirements
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Certification Process

* Automotive or medical
— No governmental certification authority

— Own certification processes based on safety
standards (e.g., ISO 26262 for automotive systems)

* Avionics
— Governmental certification authority (e.g., FAA)

— Strict certification process (e.g., DO 178 B for
software)

— Peer review sessions and traceability documents
(human intensive and potentially error prone)



Towards a Design-driven Approach

e Design artifact
— Early verification of the requirements
— Development guidance
— Basis for tracing documents

* General-purpose approaches (e.g., MDE)
— Coherence between the multiple views of the system
— Conformance across the development stages

* Need for a design framework that

— Supports the development process

— Guides the certification process in a systematic
manner



— Generation of dedicated development support

Design Framework

* DiaSuite: a development tool-suite based on a
specific design paradigm

— A design language dedicated to this design paradigm
[ICSE’11]

— Covers both functional and non-functional aspects of
an application [OOPSLA’10, FASE’11]

(requirement traceability by construction)
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Sense/Compute/Control (SCC)
Software System
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[Taylor et al., Software Architecture: Foundations, Theory, and Practice, 2009]



Sense/Compute/Control (SCC)
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The SCC Architectural Style
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Functional Design
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The Heading Mode

entity Aileron {
action Control;
}

entity NavigationMMI {
source targetHeading as Float;
¥

entity IRU {
source heading as Float;
source roll as Float;
action Deactivate;

}

context IntermediateHeading as Float {
when provided heading from IRU;
get targetHeading from NavigationMMI;
always publish;



Non-functional Design

Aileron
External . »| Navigation
Environment MM

=

1
heading l . FailureException
200ms \

From Req. 2 and Req. 3

entity IRU {

source heading as Float [frequency 200 ms];
source roll as Float;

action Deactivate;

raises FailureException;




Non-functional Design
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Aileron context IntermediateHeading as Float {
Controller when provided heading from IRU;

get targetHeading from NavigationMMI

in 100 ms [skipped catch]:
always publish;

}

context TargetRoll as Float {
when provided IntermediateHeading;
get roll from IRU
in 200 ms [mandatory catch];
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Layered View of the SCC Paradigm

Control
Non-functional
Compute
Sense
X Environment
Control
Functional Compute

Sense




Multi-layer Design
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Verification at Design Time

* Early verification of the requirements
— Functional (behavioral invariants)

— Non-functional (time-related properties, error
handling)

e Generation of a formal model from the
application design

* Traceability by construction (generation of a
dedicated programming framework)



Verification Support

* Translation of the design into a network of timed automata
— Automatic generation of a UPPAAL model
— Each component = a timed automata

obtainingValue

timer<=compute_time
r ' )

context TargetRoll as Float { timer=0
when provided IntermediateHeading;
get roll from IRU in 200 ms[mandatory catch]
always publish;

Update
triggered pullingm

N 4 o a
Q getProcID() & timer=0 >t mer<=deadline

\ © i
( ¢ missingValue

 Translation of the high-level requirements into temporal properties
(by hand)

* Verification of the properties using the UPPAAL model checker
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Time-related Properties
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Generation of an observer automata model to ease the verification of time-

related properties

A[] (!(heading.FailureDetected && roll.FailureDetected) imply ! observer.Timeout)

equirement
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Error-handling Properties
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A[] (IRU.failureException = A<> controlDisplayUnit.DisplayFailure
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Programming Support

-

context IntermediateHeading as Float {

D e

L...]

when provided heading from IRU; Generation

get targetHeading from NavigationMMI;
always publish;

Float heading,
Binding binding);

> public abstract Float onHeadingFromIRU(

~

public abstract class AbstractIntermediateHeading {

Implementation

(Eublic class IntermediateHeading extends AbstractIntermediateHeading {
private PIDController controller;

public Float onHeadingFromIRU(Float heading, Binding binding,

GetContext getContext) {
NavigationMMI mmi = binding.navigationMMI();

Float targetHeading = mmi.getTargetHeading();

}
\J}

~

return controller.update(Config.PERIOD, targetHeading, heading.value(), @)

J




Error-handling Support

-

context IntermediateHeading as Float {

when provided heading from IRU;

%_-et targetHeading from NavigationMMI in

Generation

J
Implementation /

(" )

public abstract class AbstractIntermediateHeading {

public abstract Float onHeadingFromIRU(
Float heading,
Binding binding)

public abstract Float getTargetHeading(...,
IRUHeading continuation);

@0verride

public class IntermediateHeading extends AbstractIntermediateHeading {

public Float onHeadingFromIRU(Float heading, Binding binding) {
NavigationMMI mmi = binding.navigationMMI();
Float targetTargetHeading = mmi.getTargetHeading(

public Float onkError() {
return DEFAULT_VALUE;?}

Mandatory error handling




Timing-Constraints Monitoring Support

* Generation of monitors dedicated to timing-
constraints verification [FASE'11]

— Transparent for the developer

— Traceability of the time-related requirements
(needed for the certification process)

* Implementation of handlers for the violation
of the timing constraints
— Testing
— Runtime
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Simulation-based Testing Support

Physical system simulation

@ Simulation without
any modification of the

FlightGear
physical
model

read £very 100 ms




Simulation-based Testing Support

®* Functional aspects

—Simulated external
environment

—Validation of the functional
implementation using mock-

up entities
* Non-functional aspects
- FaU|t |nJECt|0n public class SimulatedIRU extends AbstractIRU
o . implements SimulatorListener {
—Verification of the public SimulatedIRUCFGModel model) {
excephonal Component ) model.addListener(this);
behavior public void simulationUpdated(FGModel model) {

publishPosition(model.getInertialPosition());

}
}



Conclusion

* A design language to describe both the
functional and non-functional aspects of a
dependable SCC application

* A generative approach that leverages the design
to provide
— development support (high-level programming

framework, automatic traceability of the
requirements)

— validation support (formal model for the early
verification of the requirements, simulation-based
testing)

http://diasuite.inria.fr




