Design-driven Development
of Dependable Applications:
A Case Study in Avionics

Quentin Enard??, Stéphanie Gatti!?, Julien Bruneau??,
Young-Joo Moon?, Emilie Balland* and Charles Consel!

IPhoenix, Inria, France

’Thales Airborne Systems, France

Dependable Applications

* Dependability [Avizienis et al, 2004] includes the following
attributes

— Safety: absence of catastrophic consequences on the user(s)
and the environment

— Availability: readiness for correct service
— Reliability: continuity of correct service

* Need of a certification process
— Safety analysis

— Specification of the functional and non-functional
requirements (e.g., fault tolerance, QoS)

— Conformance across the development stages (requirements
traceability)

Case Study: an Avionics Flight
Guidance Application

* Risk analysis = Design Assurance Level (DAL) = A
* Definition of the requirements

Availability ———

the heading mode must not

~exceed 650 ms.

<’ %1. The execution time O

Tt ensures that the Irequency

) of computation of the head-

ing mode does not lead to an
unexpected behavior of the
plane.

Req2. The freshness of the
navigation data used by the
application must be less than
200 ms.

The use of an outdated navi-
lead to erro-

Reliability

L¥eq3. The ADIRU Ilkmus It ensures the availability of
< replicated twice to tolerate at) navigation data, despite the
Neast one crash failure. loss of a sensor.

Reqd. Any mallunctioning or
lost sensor must be signaled to
the pilot, with identification
of the probable cause.

Decisions taken by the pi-
lot are based on information
about the sensors’ state.

ReqBb. A navigation mode
must be deactivated if the

ppropriate data, a

mode cannot safely
Safety oy 3

%Twed-dnwmn% le.
6. Information related tSN

the activation/deactivation of

< logged.

Application monitoring is
)«l for maintenance.

/

navigation modes must be

/

Execution Time
Max = 500ms

Control

/4 Roll

Execution Time
Max = 450ms

Control

Handle Unaivalable Spead—

Data Situations

Compute
Navigation Data \ ¥ \

L J |
o St _ . \ Control
) T ~ S\ Pitch
Interact 20 T, 7
with Filot \ Data Fresh “ Execution Time
ata Freshness
; Max = 500ms
PM . Max = 200ms
Navigation Data \
Signal Failures '\, _ Detect
to the Pilot Failures

Certification Process

* Automotive or medical
— No governmental certification authority

— Own certification processes based on safety
standards (e.g., ISO 26262 for automotive systems)

* Avionics
— Governmental certification authority (e.g., FAA)

— Strict certification process (e.g., DO 178 B for
software)

— Peer review sessions and traceability documents
(human intensive and potentially error prone)

Towards a Design-driven Approach

e Design artifact
— Early verification of the requirements
— Development guidance
— Basis for tracing documents

* General-purpose approaches (e.g., MDE)
— Coherence between the multiple views of the system
— Conformance across the development stages

* Need for a design framework that

— Supports the development process

— Guides the certification process in a systematic
manner

— Generation of dedicated development support

Design Framework

* DiaSuite: a development tool-suite based on a
specific design paradigm

— A design language dedicated to this design paradigm
[ICSE’11]

— Covers both functional and non-functional aspects of
an application [OOPSLA’10, FASE’11]

(requirement traceability by construction)

Functional &

Safety
Requirements
&

N

G

Designers

J

@

>

Application
Design

o

Compiler

Testing
Support

J

J \u

\

Programming
framework

J

7

\

.| Execution platform

back-end

N

J

Generated
Support

J

&

Developers

()
| Testing @ @

(Support Testers
e — _ J
—"E , 1o
— _ | Programming
— Designers ' framework &
> Application \ J
Funs::t::o:nal & @) pgesign p % Developers
arety \ .
» . Execution platform
\Reqmrements Compiler T
_ J
Generated

\ Support Y,

Sense/Compute/Control (SCC)
Software System

/, Control

Compute

N

Sense

[Taylor et al., Software Architecture: Foundations, Theory, and Practice, 2009]

Sense/Compute/Control (SCC)

direction

Software System

aileron, engine

Compute

Control \
e
*

N

GPS, flight plan

Sense

-

The SCC Architectural Style

= =~

orders [actuators) ------
(”’——> actions / TS
control ™
operators
refined
information

context
operators
P 4
sources _
raw data sensors J4==="

N 7

Functional Design

Aileron

Control

i

[

Aileron
Controller

)

targetHeading

A

Intermediate
Heading

roll

Navigation
MMI

IRU

The Heading Mode

entity Aileron {
action Control;
}

entity NavigationMMI {
source targetHeading as Float;
¥

entity IRU {
source heading as Float;
source roll as Float;
action Deactivate;

}

context IntermediateHeading as Float {
when provided heading from IRU;
get targetHeading from NavigationMMI;
always publish;

Non-functional Design

Aileron
External . »| Navigation
Environment MM

=

1
heading l . FailureException
200ms \

From Req. 2 and Req. 3

entity IRU {

source heading as Float [frequency 200 ms];
source roll as Float;

action Deactivate;

raises FailureException;

Non-functional Design

Aileron
Control T
Aileron context IntermediateHeading as Float {
Controller when provided heading from IRU;

get targetHeading from NavigationMMI

in 100 ms [skipped catch]:
always publish;

}

context TargetRoll as Float {
when provided IntermediateHeading;
get roll from IRU
in 200 ms [mandatory catch];

roll

200ms,
Skipped

targetHeading Intermediate always publish;
Heading 1
1 00ms,
Mandatory

heading
200ms

Navigation

MMI IRU

Layered View of the SCC Paradigm

Control
Non-functional
Compute
Sense
X Environment
Control
Functional Compute

Sense

Multi-layer Design

Aileron

Control T

Aileron
Controller

roll

200ms,
Skipped

Intermediate
Heading

targetHeading

| 00ms,
Mandatory

heading
200ms

Navigation
MMI IRU

Separation of concerns

Navigation
MMI IRU

DisableMode \ /
Mode
Controller

A

Deactivate

Data
Availability

FailureException

From Req. 4

Verification at Design Time

* Early verification of the requirements
— Functional (behavioral invariants)

— Non-functional (time-related properties, error
handling)

e Generation of a formal model from the
application design

* Traceability by construction (generation of a
dedicated programming framework)

Verification Support

* Translation of the design into a network of timed automata
— Automatic generation of a UPPAAL model
— Each component = a timed automata

obtainingValue

timer<=compute_time
r ')

context TargetRoll as Float { timer=0
when provided IntermediateHeading;
get roll from IRU in 200 ms[mandatory catch]
always publish;

Update
triggered pullingm

N 4 o a
Q getProcID() & timer=0 >t mer<=deadline

\ © i
(¢ missingValue

 Translation of the high-level requirements into temporal properties
(by hand)

* Verification of the properties using the UPPAAL model checker

<= 650 ms

Time-related Properties

Aileron

Control T

Aileron
Controller

targetHeading

Heading
[00m:s,

Intermediate

roll

200ms,
Skipped

Mandatory heading
200ms
Navigation
MMI

IRU

Generation of an observer automata model to ease the verification of time-

related properties

A[] (!(heading.FailureDetected && roll.FailureDetected) imply ! observer.Timeout)

equirement

the heading mode must not

Description

It ensures that the frequency
of computation of the head-
ing mode does not lead to an
unexpected behavior of the
plane.

Req2. The freshness of the
navigation data used by the
application must be less than
200 ms.

The use of an outdated navi-
gation data can lead to erro-
neous decisions.

Req3. The ADIRU['[must be
replicated twice to tolerate at
least one crash failure.

It ensures the availability of
navigation data, despite the
loss of a sensor.

Reqd. Any malfunctioning or
lost sensor must be signaled to
the pilot, with identification
of the probable cause.

Decisions taken by the pi-
lot are based on information
about the sensors’ state.

ReqBb. A navigation mode
must be deactivated if the
required data is unavailable.

‘Without appropriate data, a
navigation mode cannot safely
control the plane.

Req6. Information related to
the activation/deactivation of
navigation modes must be
logged.

Application monitoring is
used for maintenance.

Error-handling Properties

Aileron

i

Aileron
Controller

Intermediate
Heading

Separation

ControlDisplay
V)

IRV

DisplayFailure

of concerns

Navigation

IRU

Conftroller

FailureException

Deactivate

Requirement

Description

Reql. The execution time of
the heading mode must not
exceed 650 ms.

It ensures that the frequency
of computation of the head-
ing mode does not lead to an
unexpected behavior of the
plane.

Req2. The freshness of the
navigation data used by the
application must be less than
200 ms.

The use of an outdated navi-
gation data can lead to erro-
neous decisions.

Reqa. The ADIRU["

It ensures the availability of
navigation data, despite the
oss of a sensor.

Reqd. Any malfunctioning or
lost sensor must be signaled to
the pilot, with identification

ReqBb. A navigation mode
must be deactivated if the
required data is unavailable.

Decisions taken by the pi-
ot are based on information
bout the sensors’ state.

‘Without appropriate data, a
navigation mode cannot safely
control the plane.

Req6. Information related to
the activation/deactivation of
navigation modes must be
logged.

Application monitoring is
used for maintenance.

A[] (IRU.failureException = A<> controlDisplayUnit.DisplayFailure

IIU

G

Designers

Implementation

Functional &
Safety

Requirements
\ J

@

> Application

Compiler

Testing

Programming
framework

Generated
\ Support Y,

Programming Support

-

context IntermediateHeading as Float {

D e

L...]

when provided heading from IRU; Generation

get targetHeading from NavigationMMI;
always publish;

Float heading,
Binding binding);

> public abstract Float onHeadingFromIRU(

~

public abstract class AbstractIntermediateHeading {

Implementation

(Eublic class IntermediateHeading extends AbstractIntermediateHeading {
private PIDController controller;

public Float onHeadingFromIRU(Float heading, Binding binding,

GetContext getContext) {
NavigationMMI mmi = binding.navigationMMI();

Float targetHeading = mmi.getTargetHeading();

}
\J}

~

return controller.update(Config.PERIOD, targetHeading, heading.value(), @)

J

Error-handling Support

-

context IntermediateHeading as Float {

when provided heading from IRU;

%_-et targetHeading from NavigationMMI in

Generation

J
Implementation /

(")

public abstract class AbstractIntermediateHeading {

public abstract Float onHeadingFromIRU(
Float heading,
Binding binding)

public abstract Float getTargetHeading(...,
IRUHeading continuation);

@0verride

public class IntermediateHeading extends AbstractIntermediateHeading {

public Float onHeadingFromIRU(Float heading, Binding binding) {
NavigationMMI mmi = binding.navigationMMI();
Float targetTargetHeading = mmi.getTargetHeading(

public Float onkError() {
return DEFAULT_VALUE;?}

Mandatory error handling

Timing-Constraints Monitoring Support

* Generation of monitors dedicated to timing-
constraints verification [FASE'11]

— Transparent for the developer

— Traceability of the time-related requirements
(needed for the certification process)

* Implementation of handlers for the violation
of the timing constraints
— Testing
— Runtime

8

Functional &
Safety
Requirements

G

Designers

Testing

J

@

A

» Application

Design

\ J

Compiler

Support

\.

framework

7

\.

Execution platform

back-end

28
Testers

o,

Developers

J

Generated
Support

J

- -
- ..
- ~

entities Environment
action “ —
v : .
(controller } Aircraft physical
system
external
@ environment
souTrce How to test
entities \ ' ' the flight guidance
3 ® application?

."*
"

Simulation-based Testing Support

Physical system simulation

@ Simulation without
any modification of the

FlightGear
physical
model

read £very 100 ms

Simulation-based Testing Support

®* Functional aspects

—Simulated external
environment

—Validation of the functional
implementation using mock-

up entities
* Non-functional aspects
- FaU|t |nJECt|0n public class SimulatedIRU extends AbstractIRU
o . implements SimulatorListener {
—Verification of the public SimulatedIRUCFGModel model) {
excephonal Component) model.addListener(this);
behavior public void simulationUpdated(FGModel model) {

publishPosition(model.getInertialPosition());

}
}

Conclusion

* A design language to describe both the
functional and non-functional aspects of a
dependable SCC application

* A generative approach that leverages the design
to provide
— development support (high-level programming

framework, automatic traceability of the
requirements)

— validation support (formal model for the early
verification of the requirements, simulation-based
testing)

http://diasuite.inria.fr

