
Compiling avionics software with a formally verified
compiler

Sandrine Blazy

IFIP WG 2.11, 2014-03-18

jeudi 20 mars 14

The CompCert project
compcert.inria.fr

Goal: develop and prove correct a realistic compiler usable for critical
embedded software
• from (a very large subset of) the C language
• to assembly code for popular processors (PowerPC, ARM, x86)
• producing reasonable efficient code (→ some optimizations)

Used Coq to mechanize the proof of semantic preservation and also to
implement most of the compiler.
(Executable via automatic extraction to Caml.)

jeudi 20 mars 14

Verifying a compiler

Using Coq, we prove the following semantic preservation property:

• Compilers are allowed to fail (ill-formed source code, or capacity
exceeded).

• Compiler written from scratch, along with its proof; not trying to prove an
existing compiler.

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,
then «C behaves like S».

jeudi 20 mars 14

Verifying a compiler

Using Coq, we prove the following semantic preservation property:

• Compilers are allowed to fail (ill-formed source code, or capacity
exceeded).

• Compiler written from scratch, along with its proof; not trying to prove an
existing compiler.

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,
then «C behaves like S».

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,
then «C behaves like S».

jeudi 20 mars 14

Reducing non-determinism during compilation

Languages such as C leave evaluation order partially unspecified.

The expression f()+g() can evaluate either to:

• 1 if f() is evaluated first (returning 1), then g() (returning 0);
• -1 if g() is evaluated first (returning -1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time.
The compiled code therefore has fewer behaviors than the source program
(1 instead of 2).

int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }

jeudi 20 mars 14

Semantics preservation property

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,
then the observable behavior of C is one of the possible observable
behaviors of S according to the C semantics.

jeudi 20 mars 14

Semantics preservation property

Behaviors = termination / divergence / undefined («going wrong»)
+ trace of I/O operations performed

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,
then the observable behavior of C is one of the possible observable
behaviors of S according to the C semantics.

jeudi 20 mars 14

Semantics preservation property

Behaviors = termination / divergence / undefined («going wrong»)
+ trace of I/O operations performed

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,
then the observable behavior of C is one of the possible observable
behaviors of S according to the C semantics, or improves on one of
these possible behaviors.

Improving = replacing undefined behaviors by more defined behavior

jeudi 20 mars 14

Improving behaviors during compilation

Compilers routinely optimize away
going-wrong behaviors.

This program goes wrong.

However, the compiler eliminates
x=1/0; as it is dead code.

Thus, the generated code terminates
with the same trace of observable
events out("Crash!\n").

 #include <stdio.h>
 int main()
 {
 int x;
 printf("Crash!\n");
 x = 1 / 0;
 return 0;
 }

jeudi 20 mars 14

Improving behaviors during compilation

This program goes wrong.

However, the code generated
by the compiler does not
check the array bounds.

The generated code may
crash but in general it prints
an arbitrary integer and
terminates normally.

 #include <stdio.h>
 int main()
 {
 int x[2] = { 12, 34 };
 printf("x[2] = %d\n", x[2]);
 return 0;
 }

jeudi 20 mars 14

A consequence of the main CompCert theorem

We know that the source program does not go wrong
• e.g. because it was formally verified with a static analyzer.

If the source program can not go wrong, then the behavior of the generated
assembly code is exactly one of the behaviors of the source program.

The generated assembly code can not wrong.

Theorem transf_c_program_is_refinement:
forall p tp, transf_c_program p = OK tp →
(forall behv, exec_C_program p behv → not_wrong behv) →
(forall behv, exec_Asm_program tp behv → exec_C_program p behv).

jeudi 20 mars 14

Compiling critical embedded
software

jeudi 20 mars 14

Fly-by-wire softwareExecute pilot's commands

Flight assistance: keep aircraft within safe flight
envelope

jeudi 20 mars 14

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%&G%HE%&&%EI

1J59K$?$@:%L%-M6:N?$%L

!"#$%&'($#

)(*+,*+-'./+
0$1&"#/.

!'.2.34#
1$5/

!67+7'($#

789:;+:.</.
0$=#.$(+>".432/
&$>'#'$=

Mostly control-command code (Scade) + a
minimalistic OS (C)

100k - 1M LOC code, but mostly generated from
block diagrams (Simulink, Scade)

Fly-by-wire software

jeudi 20 mars 14

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%''%F%GH%I'%GG%'J

495:7:K@$%L9:A?:L$

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%FF%G%HI%JF%HH%F'

K"%=<9:B:?";:5A

L K$%?M"N:;9$%C$%NC67%:@N59;"A;%86%>OPIQR,S2>PI&,
!$A%=5C6@$%T%IF%N"#$7%8$%8$7?9:N;:5A%U%V%G%N"#$7%N569%C$7%"6;9$7W
!$A%?M"9#$%8$%;9"=":C%:A86:;$%U)FR'%T%X%C:#A$7%8$%;$7;%N569%I%C:#A$%8$%?58$%
$@E"9Y6<ZW

The qualification
process (DO-178)

Rigorous validation: review (qualitative), analysis
(quantitative), testing (huge amounts)

Conducted at multiple levels, from design to final product

Meticulous development process; extensive
documentation

jeudi 20 mars 14

From block diagrams
to code

code
generator compiler

jeudi 20 mars 14

From block diagrams
to code

code
generator compiler

output
outputinput

jeudi 20 mars 14

From block diagrams
to code

code
generator compiler

output
outputinput

delay
symbol

jeudi 20 mars 14

From block diagrams
to code

code
generator compiler

output
outputinput

delay
symbol

delay macro

delay
symbol

delay
symbol

delay
macro

jeudi 20 mars 14

From block diagrams
to code

code
generator compiler

output
outputinput

observation
point

variable
stored in RAM

delay
symbol

delay macro

delay
symbol

delay
symbol

delay
macro

jeudi 20 mars 14

; annotation: Begin loop
...
addi r3, 0, 1
; annotation: Here x is in r3
...
; annotation: End loop

Program annotations

A mechanism to attach annotations to program points
• Mark specific program points
• Provide information about the location of C variables.
• Ensure that some variables are preserved (e.g. x must be kept in a register).

Annotations are preserved during compilation.
• Each annotation generates an observable event.

_annot("Begin loop");
...
x = 1;
_annot("Here x is in %1",x);
...
_annot("End loop");

compiler

jeudi 20 mars 14

A formally verified compiler gives traceability guarantees.

Simplified example
• The semantics preservation theorem ensures preservation of:

• the sequencing of symbols,
• the sequencing of accesses to hardware devices (volatile variables).

Remember the main theorem: If the source program can not go wrong, then
the behavior of the generated assembly code is exactly one of the behaviors
of the source program.

Conformance to the qualification process

Theorem transf_c_program_is_refinement:
forall p tp, transf_c_program p = OK tp →
(forall behv, exec_C_program p behv → not_wrong behv) →
(forall behv, exec_Asm_program tp behv → exec_C_program p behv).

jeudi 20 mars 14

How good is the
compiled code ?

Trade-off between
• traceability guarantees
• and efficiency of the generated
code

Low-level verifications
• reviews of the assembly
• computation of a WCET
estimation

jeudi 20 mars 14

WCET improvement

FCGU A380: 3600 files, 3.96 MB of assembly code

• Estimated WCET for each file
• Average improvement per file: 13,5%
• Compiled with CompCert 1.10, March 2012

jeudi 20 mars 14

Overall assessment

The improvement mainly comes from the register allocation pass.
• From: no register allocation
• To: sharing of local variables among available registers

Traceability guarantees
• From: tracking of all program variables
• To: tracking of meaningful variables (existing in block diagrams)

jeudi 20 mars 14

Concluding remarks
Reusable libraries

jeudi 20 mars 14

Concluding remarks
Connections with verification tools

Are these verification tools semantically sound ?

static
analyzer

model
checker

code
generator

program
prover

verified
compiler

subsets
of C

Vision: simpler, more precise
verification tools
Know precisely how the
compiler implements
unspecified behaviors of C

jeudi 20 mars 14

Concluding remarks
Higher assurance

Towards a qualification strategy for CompCert (DO-178C)

• How to qualify a C compiler ? a Coq formal development ?

• CompCert is specified by the semantics of its source and target languages
(incl. supporting theories: machine integers, floats, I/O model and memory
model), and by the semantics preservation theorem

• Use of interpreters to test these semantics

• Thanks to the proof, no need to talk about intermediate languages,
compilation algorithms, optimizations and their supporting static
analyses.

• Trust in Coq’s extraction ? Trust in Caml ?

jeudi 20 mars 14

