Higher-Order Model Checking
and Program Verification

Naoki Kobayashi
University of Tokyo

What's This Talk About?

¢ Introduction to
- higher-order model checking

(model checking of higher-order recursion schemes)
- and its applications to
automated verification of

higher-order functional programs
(e.g. "software model checker” for ML)

¢ Discussion on potential applications to
automated verification of code generators

Tool demonstration:
MoCHi

(a software model checker
for a subset of OCaml)

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ "Standard” applications to program
verification

¢ Applications to verification of code generators
¢ Conclusion

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree

Order-0 HORS S - a
(regular tree grammar c B
S >ac B B - '1
B>b S oo

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree

Order-0 HORS S >a
(regular tree gramm c B
S >a c B B-b
Bo>b S o %\
c b
Ssa —>a —>a .7 CI‘
/N /N /\ /\\
c B ¢ b ¢ b b
| | “
S a

Q
/\
B 3
|

¢ C

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree

Order-1 HORS

S > AcC

Ax—>a x (A (b x))
Sio0, At o> o0

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for ~2=-—-*~~ -~ ~£fivite {ree
Tree whose paths

Order-1 HORS are labeled by
S 5 Ac a™? b™ ¢
Ax—>a x (A x) Cf\a
S:0, A: 0> 0 a
b a
s 5Ac—a —-a - ... |b/\a
/\\ /7 \ C | 7\
C a
c A(b c) A tl)
b A(b(b c)) C

b
i
c' *r
c

Higher-Order Recursion Scheme
(HORS)

¢ Grammar for generating an infinite tree
Order-1 HORS
S > Ac

Ax—>a x (A x))
S:0, Ato—> o0

HORS N

Call-by-name simply-typed A-calculus
<+

recursion, tree constructors -

Higher-Order Model Checking

(Given
G: HORS
A: alternating parity tree automaton

~

(a formula of modal p-calculus or MSO),

\does A accept Tree(6)?

J

e.g.
- Does every finite path end with "c"?
- Does "a” occur below "b"?

Higher-Order Model Checking

Order-1 HORS
S > AcC
Ax—>a x (A (b x) cf\a
S:0, A: 0> 0 b/\a
| /\Cl
/Q1. Does every finite path end with “¢"? \c

i
YES! b
Q2. Does "a” occur below "b"? c!

b
,
NO! tlf
C

_ J

Higher-Order Model Checking

Given
G
A:

_

does A accept Tree(G)?

~

HORS
alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

J

e.g

- Does every finite path end with “c"?

- Does "“a” occur below "b"?

-

p(x))

k-EXPTIME-complete [Ong, LICS06] k_/ 2
(for order-k HORS) 2
2

J

TRecS [K. PPDP0O9]
http://www-kb.is.s.u-tokyo.ac. jp/~koba/trecs/

) Type—Based Model Checker for Higher-Order Recursion Scheme — Mozilla Firefox

rE R®ED FrOL EEG Tuhw-dE w-l@D AT

@ - (ar | | htteed S kbeceitohoku.ac o/ kobadtrecs/ 77 - | Gl Jsl

(5] &iRBA—T P Firefox EETHLD 0 BIFZT21-2
lj FrontPage — Kobalab Wiki |_] Type-Bazed Model Ghecker for. Bl | o £ Fe—@BREREIEEN 0, -
-

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit" button. Examples are given below. Currently, our model checker only accepts deterministic Buchn
automata with a trivial acceptance condition.

¢ The first practical model checker for HORS

¢ Does not immediately suffer from k-EXPTIME
bottleneck

¢ A more recent model checker (HorSat2) can scale up

to grammars consisting of 100,000 rules, depending
on input

Inﬂ

HO Model Checking as Generalization of
Finite State/Pushdown Model Checking

¢ order-0 ~ finite state model checking
¢order-1 ~ pushdown model checking

infinite tree ~ transition system

/\

¢ b 0
AN \@
4 w_n N C b e
Does "a
| . — N
occur a Is there a transition
below "b"? i i
¢ b a" occurs after "b": ,

HO Model Checking as Generalization of
Finite State/Pushdown Model Checking

¢ order-0 ~ finite state model checking
¢order-1 ~ pushdown model checking

infinite tree ~ (infinite-state) transition system

IN (@ (@) (a)—> ..
o T
';I’ N (0 (b (b) (b)e -

b a
) e
\ Y/} f . . \
Does "a b R Is there a transition
i Ioccg‘r; - cl: b sequence in which
elow "b™ | "a" occurs after "b"?
g J b _ . f Y,

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ "Standard” applications to program
verification

¢ Applications to verification of code generators
¢ Conclusion

From Program Verification

to HO Model Checking
[K. POPL 2009]

Higher-order

program
+ —
specification

(on events or

Program
Transformation

#

Tree automaton,

output)

HORS

(describing all
event sequences
or outputs)

+

recoghizing

—

Model
Checking

valid event sequences

or outputs

From Program Verification to Model Checking:

Example
let f x = Fxk o> + (c k) (r(F x k)
if * then close(x) [> S —>Fdx*
else (read(x); f x) /\
in IC N
let y = open “foo" x I
in C rl'
f (y) S
N CI:_Ir
Is the file “foo" (R

Is each path of the tree
labeled by r*c?

) . J

ccessed according | ——p
to read* close?

é . :
continuation parameter,

expressing how “foo” is B
accessed after the call returns

N .

From Program |

_ Fxk—o> + (c k) (r(F x k)
let »S > FdxX

if * then close(x)
else (read(x); f x) rk 2

CPS

in e Transformation!
let y = open "foo" | -
in C N
f (y) |
Y * N
c r
° " Il\ I I
Is the file "foo - ‘ \
ccessed according| ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, \ y

From Program Verification to Model Checking:
Example

+

et x = >S5 S Fd*
+

if * then
else rk

in CPS
e Transformation!
let y = open "foo" | -
in C N
£ ()]
Y) I &
c r
° " Il\ I I
Is the file "foo - ‘ \
ccessed according| ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, \ y

From Program Verification to Model Checking:

Example
let f x = (c k)
F»S > FdxX
close(x) .
. (kCPS
in “r Transformation!
let y = open "foo” | _
in C rl'
f (Y) l /+\

~
Is the file “"foo”

ccessed according

to read™ close?
Y,

C r
|

(

_

Is each path of the tree
labeled by r*c?

\

)

From Program Verification to Model Checking:
Example

B (r(F x k))
let f x > s L F d %
+

(read(x). f x) rk

CPS

in e Transformation!
let y = open "foo" | -
in C N
f (y) |
Y * N
c r
° " Il\ I I
Is the file "foo - ‘ \
ccessed according| ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, \ y

From Program Verification
to HO Model Checking

: HORS
Higher-order (describing all
pr'o?r'am _ Program _»even'r se:,uences)_’ Mod gl
specification (Transformation . +omaton for Checking

infinite trees

/Sound, complete, and automatic for: \
- A large class of higher-order programs:
simply-typed A-calculus + recursion
+ finite base types (e.g. booleans) + exceptions + ..,
- A large class of verification problems:
resource usage verification (or typestate checking),
\ reachability, flow analysis, strictness analysis, ... /

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

f(g,x)=g(x+1 [K.&Sato&Unno, PLDI2011]

Program is unsafe!
Higher-order
unctional progra

l

Ax.x>0 | Predicate
abstraction

l

@er-order
boolean program
f(g., b)=

if b then g(true)
else g(*)

Error path

property not satisfied

Higher-order
odel checking

property satisfied
Program is safe!

Comparison with Traditional Approach

" Abstraction) — .
of data and [Traditional Approach
. confrol | model
(Higher‘-or‘der\: ! i Finite state "\ checking Safe
(ft:r;c‘:g:\c:) systems 5 (rnaybe)
__Prog J \. J unsafe
C - HO Model Checking T
Abstraction
of data HO model
\ z checkin
" Higher-order HORS) J oS:fe
(functional) N—% (infinite state f—— (maybe)
___programs . Systems) | Y

unsafe

Applications to Program
Verification/Analysis

¢ For functional programs:
- Lack of assertion failures, uncaught exceptions, etc.
[K+ PLDI2011][Sato+ PEPM2013]...

- Tree-processing (e.g. XML processing) programs
[K+ POPL10][Ong&Ramsay POPL11]...

- Termination/non-termination [Kuwahara+ ESOP14, CAV15]
- Temporal properties [Murase+ POPL16]
- Exact flow analysis [Tobita+ FLOPS12]

¢ For multi-threaded programs:
- Pairwise reachability analysis [Yasukata+ CONCUR14]

Outline
¢ What is higher-order model checking?

- higher-order recursion schemes
- model checking problem

¢ "Standard” applications to program verification

¢ Applications to verification of code generators
(ongoing work with Igarashi)

¢ Conclusion

Simple language for cogen

M= x| v ax.M | MM, | fix(f,Ax.M) } constructs
| if M; then M, else M, for FP
| gensym() (* symbol generation *) o
| abs(M;, M,) (* code for abstraction *) | Bl Hves
| app(M;, M,) (* code for application *) [constructing
| op(M;, M;) (* code for a primitive *)_ code
Example:

let power n x = if n=0 then one
else *(x, power (n-1) x)

let powergen n = let x = gensym() in
abs(x, power n x)

powergen 3 ->* abs(y, *(y, *(y. *(y. one))))
(i.e., Ay.y*y*y*1)

Expected properties
for a code generator

¢ It generates only programs that:

- are closed
(i.e. "no undefined variables" error)

- are well-typed
- do not fail (e.g. due to assertion failure)
- return expected values

Code generator verification by
higher-order model checking?

¢ Model a generated program as a tree abs

y/*
¢ Code generator is then modeled y/ *\
as a (higher-order) tree grammar G y/ v

- let powergenn =
let x = gensym() in abs(x, power n x)

=> Powergen -> Gensym (Ax. abs x (Power x r))

¢ Model a property on generated programs
as a tree automaton A abs
- e.g.y occurs only below: y/\

¢ Use HO model checking to check that all the trees
generated by G are accepted by A

source code M

ﬂ’r power n X = \

if n=0 then one

else
*(x, power (n-1) x)
let powergen n =
let x = gensym() in
abs(x, power n x)

/

Example: Checking Closedfgis
Gensym passes
grammar a "fresh”

—

K symbol to C

~N

,‘

Powergen -> Gensym C
C x -> abs x (Power x)
Power x -> one

/

k / Conditional branch has /\

been replaced by hon- ’ h
deterministic rules;
if necessary, use

predicate abstraction % y

to take into account
Qhe value of n

Power x -> * x (Power x)

Gensym k -> ...
(* pass_a symbol to k *)

How can we represent
the "fresh" symbol

generation?

)

Example: Checking Closedness

source code M grammar G
ﬂ’r power n X = \ f \
if n=0 then one Powergen -> Gensym C
else C x -> abs x (Power x)
*(x, power (n-1) x) — Power x -> one
let powergen n = Power x -> * x (Power x)
let x = gensym() in Gensym k -> k var
kabs(x, power n x)/ (ensym k -> K ig j
/;'wo names are sufficient for checking the closedness of A

generated programs (cf. [K, POPLO9])

- var: the variable for which closedness should be checked

- ig: variables that should be ignored

By non-deterministically instantiating a fresh symbol to var or ig,
\we can check that every variable is bound. Y

Example: Checking Variable Usage

source code M grammar G
4) /S -> Gensym C1 \
let x=gensym() in Cl x -> Gensym (C2 x)
let y=gensym() in ‘ C2xy -
abs(x, abs(y, app(y, x))) abs x (abs y (app y X))
Gensym k -> k var
(S / kGensym k ->kig /
Trees generated by G: -
abs abs abs ; S
e S N ig abs
var /Cl S var /a S 19 /Cl S . / 5
var /GP{ ig /GPJD\ var /GRP\ '9 . /P {
var var var g Ig var '9 '9

M generates only closed programs &
In all the trees generated by G, var occurs only inside (abs var ...)

Expected properties
for a code generator

¢ It generates only programs that:
- are closed
- are well-typed
- do not fail (e.g. due to assertion failure)
- return expected values

We can also check well-typedness, as long as
the set of types used in the generated code is finite,
and known statically

Example: Checking Well-Typedness

source code M

ﬂ‘r power n X =

if n=0 then one

else

*(x, power (n-1) x)
let powergen n =
let x = gensym() in

kabs(x, power h X)

~

/

S

grammar

~

Powergen -> Gensym C

C x -> abs x (Power x)
Power x -> one

Power x -> * x (Power x)

Gensym k -> ...
(* pass a symbol to k *)

Example: Checking Well-Typedness

source code M

ﬂ‘r power n X =

if n=0 then one

else

*(x, power (n-1) x)
let powergen n =
let x = gensym() in

kabs(x, power h X)

~

/

grammar

KPower'gen -> Gensym C
C x -> abs x (Power x)
Power x -> one
Power x -> * x (Power x)
Gensym k -> k var;

~

_

-

if the type of the
generated symbol
is known to be int

- J

Example: Checking Well-Typedness

gmyw © ~ Trees generated by G:
Powergen -> Gensym C abs abs
g Y P Py
C x -> abs x (Power x) Vary; * Var.. %
P /\ m‘r/\
ower X -> one var... var .
int int var;,+
Power x -> * x (Power x) N
Gensym k -> k var;,; VaFinr VQTint

o /

Tree automaton A for accepting "well-typed” terms |-M:i o>t |[-N:io }

(g, : the state for accepting terms of typet) _~ T

Qint * =2 Qint Qint Qint ONE -> .

Goc GBS ->qvar; q. q. app ->q,.,. q, (for each o, 1)
qvar. var, ->.

M generates only well-typed programs <
All the trees generated by G are accepted by A

Verifying other properties
¢ Goa: check that all the generated
programs:
- are closed
- are well-typed
- do not fail (e.g. due to assertion failure)
- return expected values

- Design a type system for generated programs
(possibly using recursive types, intersection types, etfc.)
- Turn the type system into a free automaton for accepting
well-typed terms
- Apply HO model checking

Verification of Multi-Stage Programs?

¢ Translate a multi-stage program into
a program of the single-stage, gensym language
e.g. from (a variation of) A° [Davies96] to gensym:
tro(Ax.M) = Ax.tr(M) tro(MiM,) = tro (M) tro(M.,)
tro(x) = x tro (next M) = tr; (M)
tri(Ax.M) = let x=gensym() in abs(x, try(M)) try(x) = x
tri(MiMy) = app (tr; My) (ri My) try(prev M) = 1rg (M)
¢ Apply the verification method for the gensym
language

Any benefit over typed multi-stage languages?
-- they already ensure well-typedness of generated code, etc...

+ more programs are accepted as well-typed
- difficult to support “run”

Conclusion

¢ HO model checking enables automated verification of
functional programs

- Various properties (including both safety and liveness
properties) can be checked by an appropriate combination
with abstraction and program transformation

¢ HO model checking may also be useful for verification
of code generators

	Higher-Order Model Checking�and Program Verification
	What’s This Talk About?
	Tool demonstration:�MoCHi�(a software model checker �for a subset of OCaml)�
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Model Checking
	Higher-Order Model Checking
	Higher-Order Model Checking
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	HO Model Checking as Generalization of Finite State/Pushdown Model Checking
	HO Model Checking as Generalization of Finite State/Pushdown Model Checking
	Outline
	From Program Verification�to HO Model Checking�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to HO Model Checking�
	Predicate Abstraction and CEGAR �for Higher-Order Model Checking�[K.&Sato&Unno, PLDI2011]
	Comparison with Traditional Approach
	Applications to Program Verification/Analysis
	Outline
	Simple language for cogen
	Expected properties �for a code generator
	Code generator verification by higher-order model checking?
	Example: Checking Closedness
	Example: Checking Closedness
	Example: Checking Variable Usage
	Expected properties �for a code generator
	Example: Checking Well-Typedness
	Example: Checking Well-Typedness
	Example: Checking Well-Typedness
	Verifying other properties
	Verification of Multi-Stage Programs?
	Conclusion

