
Higher-Order Model Checking
and Program Verification

Naoki Kobayashi
University of Tokyo

What’s This Talk About?
 Introduction to

– higher-order model checking
 (model checking of higher-order recursion schemes)

– and its applications to
 automated verification of
 higher-order functional programs
 (e.g. “software model checker” for ML)

 Discussion on potential applications to
automated verification of code generators

Tool demonstration:
MoCHi

(a software model checker
for a subset of OCaml)

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

 “Standard” applications to program
verification

Applications to verification of code generators
 Conclusion

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-0 HORS
(regular tree grammar)
 S → a c B
 B → b S

 → a

c B c b

→ a

S

c b

→ a

a

c B

 → ... →

c b

a

c b

a

c b

a

S

S → a
 c B
B → b
 S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

→A c

c A(b c)

→ a

 → ... →

c a

→ a

b A(b(b c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

am+1 bm c

S

Higher-Order Recursion Scheme
(HORS)

Grammar for generating an infinite tree
Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

HORS
≈

Call-by-name simply-typed λ-calculus
+

recursion, tree constructors

Higher-Order Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

Higher-Order Model Checking

Order-1 HORS
 S → A c
 A x → a x (A (b x))
S: o, A: o→ o

c a
a

b
c

a
b
b
c

a
b
b
b
c

...
Q1. Does every finite path end with “c”?
 YES!
Q2. Does “a” occur below “b”?
 NO!

Higher-Order Model Checking

 e.g.
 - Does every finite path end with “c”?
 - Does “a” occur below “b”?

Given
 G: HORS
 A: alternating parity tree automaton (APT)
 (a formula of modal µ-calculus or MSO),
does A accept Tree(G)?

k-EXPTIME-complete [Ong, LICS06]
(for order-k HORS)

 p(x)
 2
 ..
 2
2

TRecS [K. PPDP09]
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/

 The first practical model checker for HORS

 Does not immediately suffer from k-EXPTIME
bottleneck

 A more recent model checker (HorSat2) can scale up
to grammars consisting of 100,000 rules, depending
on input

HO Model Checking as Generalization of
Finite State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking

c b

a

c b

a

c b

a
infinite tree

a

c b

transition system ≈

Does “a”
occur

below “b”?
Is there a transition

sequence in which
“a” occurs after “b”?

HO Model Checking as Generalization of
Finite State/Pushdown Model Checking

order-0 ≈ finite state model checking
order-1 ≈ pushdown model checking
 infinite tree (infinite-state) transition system ≈

Does “a”
occur

below “b”?

Is there a transition
sequence in which

“a” occurs after “b”?

c a
a

b
c

a
b
b
c

a
b
b
b

...

a

c b

a

b

a

b

a ...

...

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

 “Standard” applications to program
verification

Applications to verification of code generators
 Conclusion

From Program Verification
to HO Model Checking

[K. POPL 2009]

Program
Transformation

Higher-order
program
 +
specification
(on events or
output)

HORS
(describing all
event sequences

or outputs)
+

Tree automaton,
 recognizing

valid event sequences
or outputs

Model
Checking

From Program Verification to Model Checking:
Example

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r





 Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k → + (c k) (r(F x k))
S → F d 

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

continuation parameter,
expressing how “foo” is

accessed after the call returns

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

c
+

+

c
+

c
...

r

r

r







From Program Verification to Model Checking:
Example

F x k → + (c k) (r(F x k))
S → F d 

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

let f x =
 if ∗ then close(x)
 else (read(x); f x)
in
let y = open “foo”
in
 f (y)

From Program Verification
to HO Model Checking

Program
Transformation

Higher-order
program
 +
specification

HORS
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
 - A large class of higher-order programs:
 simply-typed λ-calculus + recursion
 + finite base types (e.g. booleans) + exceptions + ...
 - A large class of verification problems:
 resource usage verification (or typestate checking),
 reachability, flow analysis, strictness analysis, ...

Predicate Abstraction and CEGAR
for Higher-Order Model Checking

[K.&Sato&Unno, PLDI2011]

Predicate
abstraction

Higher-order
functional program

Higher-order
boolean program

f(g,x)=g(x+1)

λx.x>0

f(g, b)=
 if b then g(true)
 else g(∗)

Higher-order
model checking

Error path

property satisfied

property not satisfied

Program is safe!

Real
error
path?

yes
Program is unsafe!

New
predicates

Comparison with Traditional Approach

Higher-order
(functional)
programs

Finite state
systems

Safe
or
(maybe)
unsafe

Abstraction
of data and

control

Higher-order
(functional)
programs

HORS
(infinite state

systems)

Abstraction
of data

model
checking

HO model
checking

Traditional Approach

HO Model Checking

Safe
or
(maybe)
unsafe

Applications to Program
Verification/Analysis

 For functional programs:
– Lack of assertion failures, uncaught exceptions, etc.

 [K+ PLDI2011][Sato+ PEPM2013]...
– Tree-processing (e.g. XML processing) programs

[K+ POPL10][Ong&Ramsay POPL11]...
– Termination/non-termination [Kuwahara+ ESOP14, CAV15]
– Temporal properties [Murase+ POPL16]
– Exact flow analysis [Tobita+ FLOPS12]

 For multi-threaded programs:

– Pairwise reachability analysis [Yasukata+ CONCUR14]

Outline
What is higher-order model checking?

– higher-order recursion schemes
– model checking problem

 “Standard” applications to program verification
Applications to verification of code generators

(ongoing work with Igarashi)
 Conclusion

Simple language for cogen
 M ::= x | v | λx.M | M1M2 | fix(f,λx.M)

 | if M1 then M2 else M3
 | gensym() (* symbol generation *)
 | abs(M1, M2) (* code for abstraction *)
 | app(M1, M2) (* code for application *)
 | op(M1, M2) (* code for a primitive *)
Example:
let power n x = if n=0 then one
 else ∗(x, power (n-1) x)
let powergen n = let x = gensym() in
 abs(x, power n x)
powergen 3 ->* abs(y, ∗(y, ∗(y, ∗(y, one))))
 (i.e., λy.y∗y∗y∗1)

ordinary
constructs
for FP

primitives
for
constructing
code

Expected properties
for a code generator

It generates only programs that:
– are closed

(i.e. “no undefined variables” error)
– are well-typed
– do not fail (e.g. due to assertion failure)
– return expected values
– ...

Code generator verification by
higher-order model checking?

 Model a generated program as a tree

 Code generator is then modeled

as a (higher-order) tree grammar G
– let powergen n =

 let x = gensym() in abs(x, power n x)
=> Powergen -> Gensym (λx. abs x (Power x r))

 Model a property on generated programs

as a tree automaton A
– e.g. y occurs only below:

 Use HO model checking to check that all the trees
generated by G are accepted by A

abs

y *
* y

y y

abs

y

Example: Checking Closedness

let power n x =
 if n=0 then one
 else
 *(x, power (n-1) x)
let powergen n =
 let x = gensym() in
 abs(x, power n x)

Powergen -> Gensym C
C x -> abs x (Power x)
Power x -> one
Power x -> * x (Power x)
Gensym k -> ...
 (* pass a symbol to k *)

source code M grammar
Gensym passes

a “fresh”
symbol to C

Conditional branch has
been replaced by non-
deterministic rules;
if necessary, use
predicate abstraction
to take into account
the value of n

How can we represent
the “fresh” symbol
generation?

Example: Checking Closedness

let power n x =
 if n=0 then one
 else
 *(x, power (n-1) x)
let powergen n =
 let x = gensym() in
 abs(x, power n x)

Powergen -> Gensym C
C x -> abs x (Power x)
Power x -> one
Power x -> * x (Power x)
Gensym k -> k var
Gensym k -> k ig

source code M grammar G

Two names are sufficient for checking the closedness of
generated programs (cf. [K, POPL09])
- var: the variable for which closedness should be checked
- ig: variables that should be ignored
By non-deterministically instantiating a fresh symbol to var or ig,
we can check that every variable is bound.

Example: Checking Variable Usage

let x=gensym() in
let y=gensym() in
 abs(x, abs(y, app(y, x)))

S -> Gensym C1
C1 x -> Gensym (C2 x)
C2 x y ->
 abs x (abs y (app y x))
Gensym k -> k var
Gensym k -> k ig

source code M grammar G

abs

var abs
app ig

ig var

Trees generated by G:

M generates only closed programs 
In all the trees generated by G, var occurs only inside (abs var ...)

abs

var abs
app var

var var

abs

ig abs
app ig

ig ig

abs

ig abs
app var

var ig

Expected properties
for a code generator

It generates only programs that:
– are closed
– are well-typed
– do not fail (e.g. due to assertion failure)
– return expected values
– ...

We can also check well-typedness, as long as
the set of types used in the generated code is finite,
and known statically

Example: Checking Well-Typedness

let power n x =
 if n=0 then one
 else
 *(x, power (n-1) x)
let powergen n =
 let x = gensym() in
 abs(x, power n x)

Powergen -> Gensym C
C x -> abs x (Power x)
Power x -> one
Power x -> * x (Power x)
Gensym k -> ...
 (* pass a symbol to k *)

source code M grammar

Example: Checking Well-Typedness

let power n x =
 if n=0 then one
 else
 *(x, power (n-1) x)
let powergen n =
 let x = gensym() in
 abs(x, power n x)

Powergen -> Gensym C
C x -> abs x (Power x)
Power x -> one
Power x -> * x (Power x)
Gensym k -> k varint

source code M grammar

if the type of the
generated symbol
is known to be int

Example: Checking Well-Typedness

Powergen -> Gensym C
C x -> abs x (Power x)
Power x -> one
Power x -> * x (Power x)
Gensym k -> k varint

grammar G Trees generated by G:

abs

varint *
varint varint

M generates only well-typed programs 
All the trees generated by G are accepted by A

abs

varint *
* varint

varint varint ...

Tree automaton A for accepting “well-typed” terms
(qτ : the state for accepting terms of type τ)
 qint ∗ -> qint qint qint one -> .
 qσ→τ abs -> qvarσ qτ qτ app -> qσ→τ qσ (for each σ, τ)
 qvarσ varσ -> .

|-M: σ→τ |-N: σ

|-MN: τ

Verifying other properties
Goa: check that all the generated

programs:
– are closed
– are well-typed
– do not fail (e.g. due to assertion failure)
– return expected values
– ...

 - Design a type system for generated programs
 (possibly using recursive types, intersection types, etc.)

- Turn the type system into a tree automaton for accepting
well-typed terms

- Apply HO model checking

Verification of Multi-Stage Programs?

 Translate a multi-stage program into
a program of the single-stage, gensym language
e.g. from (a variation of) λ° [Davies96] to gensym:
 tr0(λx.M) = λx.tr(M) tr0(M1M2) = tr0 (M1) tr0(M2)
 tr0(x) = x tr0 (next M) = tr1 (M)
 tr1(λx.M) = let x=gensym() in abs(x, tr1(M)) tr1(x) = x
 tr1(M1M2) = app (tr1 M1) (tr1 M2) tr1(prev M) = tr0 (M)

 Apply the verification method for the gensym
language

Any benefit over typed multi-stage languages?
-- they already ensure well-typedness of generated code, etc...

+ more programs are accepted as well-typed
- difficult to support “run”

Conclusion
 HO model checking enables automated verification of

functional programs
– Various properties (including both safety and liveness

properties) can be checked by an appropriate combination
with abstraction and program transformation

 HO model checking may also be useful for verification
of code generators

	Higher-Order Model Checking�and Program Verification
	What’s This Talk About?
	Tool demonstration:�MoCHi�(a software model checker �for a subset of OCaml)�
	Outline
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme�(HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Recursion Scheme (HORS)
	Higher-Order Model Checking
	Higher-Order Model Checking
	Higher-Order Model Checking
	TRecS [K. PPDP09]�http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
	HO Model Checking as Generalization of Finite State/Pushdown Model Checking
	HO Model Checking as Generalization of Finite State/Pushdown Model Checking
	Outline
	From Program Verification�to HO Model Checking�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to HO Model Checking�
	Predicate Abstraction and CEGAR �for Higher-Order Model Checking�[K.&Sato&Unno, PLDI2011]
	Comparison with Traditional Approach
	Applications to Program Verification/Analysis
	Outline
	Simple language for cogen
	Expected properties �for a code generator
	Code generator verification by higher-order model checking?
	Example: Checking Closedness
	Example: Checking Closedness
	Example: Checking Variable Usage
	Expected properties �for a code generator
	Example: Checking Well-Typedness
	Example: Checking Well-Typedness
	Example: Checking Well-Typedness
	Verifying other properties
	Verification of Multi-Stage Programs?
	Conclusion

