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What’s This Talk About? 
 Introduction to 

– higher-order model checking 
  (model checking of higher-order recursion schemes) 

– and its applications to 
  automated verification of  
   higher-order functional programs 
   (e.g. “software model checker” for ML) 

 Discussion on potential applications to 
automated verification of code generators 
 
 
 
 



Tool demonstration: 
MoCHi 

(a software model checker  
for a subset of OCaml) 

 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

 “Standard” applications to program 
verification 

Applications to verification of code generators 
 Conclusion 



Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 

Order-0 HORS  
(regular tree grammar) 
    S  → a  c  B 
    B → b  S 

S  → a   
    c  B 
B → b 
      S  
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Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 

Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 



Higher-Order Recursion Scheme 
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Higher-Order Recursion Scheme 
(HORS) 

Grammar for generating an infinite tree 
Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 

HORS 
≈ 

Call-by-name simply-typed λ-calculus 
+ 

recursion, tree constructors 



Higher-Order Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
 G:  HORS 
 A:  alternating parity tree automaton  
 (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 



Higher-Order Model Checking 

Order-1 HORS 
    S  → A c 
    A x → a  x  (A (b x)) 
S: o, A: o→ o 
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Q1. Does every finite path end with “c”? 
        YES! 
Q2. Does “a” occur below “b”? 
        NO! 
 



Higher-Order Model Checking 

 
 e.g.  
  - Does every finite path end with “c”? 
  - Does “a” occur below “b”? 

Given 
   G:  HORS 
   A:  alternating parity tree automaton (APT) 
       (a formula of modal µ-calculus or MSO), 
does A accept Tree(G)? 

k-EXPTIME-complete [Ong, LICS06]        
(for order-k HORS)    

      p(x) 
     2 
   .. 
  2 
2 



TRecS [K. PPDP09] 
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/ 

 The first practical model checker for HORS 

 Does not immediately suffer from k-EXPTIME 
bottleneck 

 A more recent model checker (HorSat2) can scale up 
to grammars consisting of 100,000 rules, depending 
on input  



HO Model Checking as Generalization of 
Finite State/Pushdown Model Checking 

order-0 ≈ finite state model checking 
order-1 ≈ pushdown model checking 
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Does “a” 
occur 

below “b”? 
Is there a transition 

sequence in which  
“a” occurs after “b”? 



HO Model Checking as Generalization of 
Finite State/Pushdown Model Checking 

order-0 ≈ finite state model checking 
order-1 ≈ pushdown model checking 
 infinite tree (infinite-state) transition system ≈ 

Does “a” 
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Is there a transition 
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“a” occurs after “b”? 

c a 
a 

b 
c 

a 
b 
b 
c 

a 
b 
b 
b 
 

... 

a 

c b 

a 

b 

a 

b 

a ... 

... 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

 “Standard” applications to program 
verification 

Applications to verification of code generators 
 Conclusion 



From Program Verification 
to HO Model Checking 

[K. POPL 2009] 

Program  
Transformation 

Higher-order 
program 
  + 
specification 
(on events or  
output) 

HORS 
(describing all  
event sequences 

or outputs) 
+ 

Tree automaton, 
 recognizing  

valid event sequences 
or outputs 

Model 
Checking 



From Program Verification to Model Checking:  
Example 

let f x =  
 if ∗ then close(x)  
 else (read(x); f x) 
in 
let y = open “foo” 
in 
     f (y) 
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 Is the file “foo” 
accessed according  

to read* close? 
Is each path of the tree 

labeled by r*c? 

F x k → + (c k) (r(F x k)) 
S → F d  
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From Program Verification to Model Checking:  
Example 

F x k → + (c k) (r(F x k)) 
S → F d  

Is the file “foo” 
accessed according  

to read* close? 
Is each path of the tree 

labeled by r*c? 

CPS 
Transformation! 

continuation parameter,  
expressing how “foo” is 

accessed after the call returns 
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in 
     f (y) 



From Program Verification 
to HO Model Checking 

 

Program  
Transformation 

Higher-order 
program 
  + 
specification 

HORS 
(describing all  

event sequences) 
+ 

automaton for 
 infinite trees 

Model 
Checking 

Sound, complete, and automatic for: 
  - A large class of higher-order programs: 
      simply-typed λ-calculus + recursion  
      + finite base types (e.g. booleans) + exceptions + ... 
  - A large class of verification problems: 
      resource usage verification (or typestate checking),  
      reachability, flow analysis, strictness analysis, ... 



Predicate Abstraction and CEGAR  
for Higher-Order Model Checking 

[K.&Sato&Unno, PLDI2011] 

Predicate  
abstraction 

Higher-order 
functional program 

Higher-order 
boolean program 

f(g,x)=g(x+1) 

λx.x>0 

f(g, b)=  
  if b then g(true) 
  else g(∗) 
 

Higher-order 
model checking 

Error path 

property satisfied 

property not satisfied 

Program is safe! 

Real 
error 
path? 

yes 
Program is unsafe! 

New 
predicates 



Comparison with Traditional Approach 

Higher-order 
(functional) 
programs 

Finite state 
systems 

Safe 
or 
(maybe) 
unsafe 

Abstraction 
of data and 

control 

Higher-order 
(functional) 
programs 

HORS 
(infinite state 

systems) 

Abstraction 
of data 

model 
checking  

HO model 
checking  

Traditional Approach 

HO Model Checking 

Safe 
or 
(maybe) 
unsafe 



Applications to Program 
Verification/Analysis 

 For functional programs: 
– Lack of assertion failures, uncaught exceptions, etc. 

 [K+ PLDI2011][Sato+  PEPM2013]... 
– Tree-processing (e.g. XML processing) programs  

[K+ POPL10][Ong&Ramsay POPL11]...  
– Termination/non-termination [Kuwahara+ ESOP14, CAV15] 
– Temporal properties [Murase+ POPL16] 
– Exact flow analysis [Tobita+ FLOPS12] 

 
 For multi-threaded programs: 

– Pairwise reachability analysis [Yasukata+ CONCUR14] 

 



Outline 
What is higher-order model checking? 

– higher-order recursion schemes 
– model checking problem 

 “Standard” applications to program verification 
Applications to verification of code generators 

(ongoing work with Igarashi) 
 Conclusion 



Simple language for cogen 
 M ::= x | v | λx.M | M1M2 | fix(f,λx.M)  

     | if M1 then M2 else M3 
        | gensym()     (* symbol generation *) 
        | abs(M1, M2) (* code for abstraction *) 
        | app(M1, M2) (* code for application *) 
        | op(M1, M2)   (* code for a primitive *) 
Example: 
let power n x = if n=0 then one  
                   else ∗(x, power (n-1) x) 
let powergen n = let x = gensym() in 
                        abs(x, power n x) 
powergen 3 ->*  abs(y, ∗(y, ∗(y, ∗(y, one)))) 
                   (i.e., λy.y∗y∗y∗1) 

ordinary  
constructs 
for FP 

primitives 
for  
constructing 
code 



Expected properties  
for a code generator 

It generates only programs that:  
– are closed  

(i.e. “no undefined variables” error) 
– are well-typed 
– do not fail (e.g. due to assertion failure) 
– return expected values 
– ...  

 



Code generator verification by 
higher-order model checking? 

 Model a generated program as a tree 
 
 Code generator is then modeled  

as a (higher-order) tree grammar G 
–  let powergen n =  

      let x = gensym() in abs(x, power n x) 
=>  Powergen -> Gensym (λx. abs x (Power x r)) 

 
 Model a property on generated programs 

as a tree automaton A 
– e.g. y occurs only below:  

 Use HO model checking to check that all the trees 
generated by G are accepted by A 
 

 

abs 

y * 
* y 

y y 

abs 

y 



Example: Checking Closedness 

let power n x =  
 if n=0 then one  
 else  
   *(x, power (n-1) x) 
let powergen n =  
 let x = gensym() in 
   abs(x, power n x) 

 

Powergen -> Gensym C 
C x -> abs x (Power x) 
Power x -> one 
Power x ->  * x (Power x) 
Gensym k -> ... 
   (* pass a symbol to k *) 

source code M grammar 
Gensym passes 

a “fresh” 
symbol to C 

Conditional branch has 
been replaced by non-
deterministic rules; 
if necessary, use 
predicate abstraction 
to take into account  
the value of n 

How can we represent 
the “fresh” symbol 
generation? 



Example: Checking Closedness 

let power n x =  
 if n=0 then one  
 else  
   *(x, power (n-1) x) 
let powergen n =  
 let x = gensym() in 
   abs(x, power n x) 

 

Powergen -> Gensym C 
C x -> abs x (Power x) 
Power x -> one 
Power x ->  * x (Power x) 
Gensym k -> k var 
Gensym k -> k ig 

source code M grammar G 

Two names are sufficient for checking the closedness of 
generated programs (cf. [K, POPL09]) 
- var:  the variable for which closedness should be checked 
-  ig: variables that should be ignored 
By non-deterministically instantiating a fresh symbol to var or ig, 
we can check that every variable is bound. 



Example: Checking Variable Usage 

let x=gensym() in 
let y=gensym() in 
   abs(x, abs(y, app(y, x))) 

S -> Gensym C1 
C1 x -> Gensym (C2 x) 
C2 x y -> 
    abs x (abs y (app y x)) 
Gensym k -> k var 
Gensym k -> k ig 

source code M grammar G 

abs 

var abs 
app ig 

ig var 

Trees generated by G:  

M generates only closed programs  
In all the trees generated by G, var occurs only inside (abs var ...) 

abs 

var abs 
app var 

var var 

abs 

ig abs 
app ig 

ig ig 

abs 

ig abs 
app var 

var ig 



Expected properties  
for a code generator 

It generates only programs that:  
– are closed  
– are well-typed 
– do not fail (e.g. due to assertion failure) 
– return expected values 
– ...  

 
We can also check well-typedness, as long as  
the set of types used in the generated code is finite, 
and known statically 
 



Example: Checking Well-Typedness 

let power n x =  
 if n=0 then one  
 else  
   *(x, power (n-1) x) 
let powergen n =  
 let x = gensym() in 
   abs(x, power n x) 

 

Powergen -> Gensym C 
C x -> abs x (Power x) 
Power x -> one 
Power x ->  * x (Power x) 
Gensym k -> ... 
   (* pass a symbol to k *) 

source code M grammar 



Example: Checking Well-Typedness 

let power n x =  
 if n=0 then one  
 else  
   *(x, power (n-1) x) 
let powergen n =  
 let x = gensym() in 
   abs(x, power n x) 

 

Powergen -> Gensym C 
C x -> abs x (Power x) 
Power x -> one 
Power x ->  * x (Power x) 
Gensym k -> k varint 
 

source code M grammar 

if the type of the 
generated symbol 
is known to be int  



Example: Checking Well-Typedness 

Powergen -> Gensym C 
C x -> abs x (Power x) 
Power x -> one 
Power x ->  * x (Power x) 
Gensym k -> k varint 

grammar G Trees generated by G:  

abs 

varint * 
varint varint 

M generates only well-typed programs  
All the trees generated by G are accepted by A 

abs 

varint * 
* varint 

varint varint ... 

Tree automaton  A for accepting “well-typed” terms 
(qτ  : the state for accepting terms of type τ) 
      qint ∗ -> qint qint             qint one -> . 
       qσ→τ  abs -> qvarσ  qτ           qτ  app -> qσ→τ   qσ   (for each σ, τ) 
        qvarσ    varσ -> . 
 

|-M: σ→τ    |-N: σ 
---------------------

|-MN: τ 



Verifying other properties 
Goa: check that all the generated 

programs: 
– are closed  
– are well-typed 
– do not fail (e.g. due to assertion failure) 
– return expected values 
– ...  

 - Design a type system for generated programs  
   (possibly using recursive types, intersection types, etc.) 

- Turn the type system into a tree automaton for accepting 
well-typed terms 

- Apply HO model checking 



Verification of Multi-Stage Programs? 

 Translate a multi-stage program into  
a program of the single-stage, gensym language 
e.g. from (a variation of) λ° [Davies96] to gensym: 
 tr0(λx.M) = λx.tr(M)         tr0(M1M2) = tr0 (M1) tr0(M2) 
 tr0(x) = x                          tr0 (next M) = tr1 (M) 
 tr1(λx.M) = let x=gensym() in abs(x, tr1(M))     tr1(x) = x 
 tr1(M1M2) = app (tr1 M1) (tr1 M2)       tr1(prev M) = tr0 (M) 

 Apply the verification method for the gensym 
language 
 

Any benefit over typed multi-stage languages? 
-- they already ensure well-typedness of generated code, etc... 

+ more programs are accepted as well-typed  
- difficult to support “run” 



Conclusion 
 HO model checking enables automated verification of 

functional programs 
– Various properties (including both safety and liveness 

properties) can be checked by an appropriate combination 
with abstraction and program transformation  

 HO model checking may also be useful for verification 
of code generators  
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