Derivation of Program Properties
During Generation

Christoph Herrmann

IFIP WG 2.11 Meeting
Halmstad/Sweden, June 25, 2012

Aims / Motivation

» automatic derivation of program/system properties

« small changes can have large effects
« human interaction kills productivity and introduces errors

» properties are parameterized

e because programs are parametrized
o fight limits of decidability by patterns

» derivation during generation

 rule out general cases that we do not need
« enable more precise analysis results

Potential Application Areas

- autonomous and resource-critical systems

* be sure memory space and energy are sufficient
e reaction in time required
« consider devices other than CPU as well

- business applications in the large scale
« millions of business objects updated in few hours
+ high-performance computing

e as much parallelism as necessary, but
 as little energy consumption as possible

Adding Analysis to Generation

Layer n+1 Design what we want: (Properties

New Generator i

Old Generator —> Decisions = Analysis

N what we have,
Layern Design by induction: ~ Properties

Layer O: low-level analysis, measurements, data sheets

Example Uses of Layers (1)

» autonomous venhicles

3: strategic layer: describes global plan

2. execution layer: coordinates actions of one
vehicle

1: operational layer: controls each unit, processes
data

0: assembly code
- maybe fixed blocks or fixed loops (exploit pipelining)

Example Uses of Layers (2)

- relational database queries
3: specification in a query language (SQL)
2: collective data base operations (join, filter)
1: imperative loop language (for, :=, +, if)
0: assembly code (mov, add, cmp)

Example Uses of Layers (3)

- high-performance computing

4: coordination language (HDC, Eden)

3: algorithmic skeletons (HOF divide-and-conquer)
2: architectural skeletons (MPI map, MPI reduce)
1: imperative program (C, Fortran)

- skeleton implementation

- compiled customizing functions
0: assembly code

Problem with Existing Approaches:
Lack of Productivity

> monolithic analyses

* neglect at least low-level details (assembly code) or
high-level structures (symbolic loop bounds)

e require large amount of human interaction to annotate
the program to help the analysis tools

 human effort has to be repeated in case of changes
- dependently-typed languages

e can transfer the properties between layers of abstraction
(provided formalization of assembly code etc. given)

e require large amount of human interaction to provide
appropriate proofs

Industrial Practice

- flight control software

* no loops with parameterized bounds
e changes in the code: complete rerun of analysis

» business applications

« OO design: no concept how to integrate properties
» generation includes only trivial program logic
 profiling in case of known resource problems

 quality control: mainly testing, testing, testing
(customers are not interested in formal correctness
but that the system behaves as they expect)

Advantages of the Suggested Method:
Coupling of Generation and Analysis

no code is generated that cannot be analysed
analysis benefits from the generator

* in the design by exploiting expert knowledge
 in the application by exploiting special cases

manual effort must be spent only on the generator, not
on the generated code (in contrast to use of typical
analysis tools)

no type connection between the code generator and
the generated code, which makes writing generators
more productive (at the loss of formal guarantees)

Ex. Choices: Data Base Query

» Case A: all fields available in one physical table

e generate a loop and the analysis for the loop

» Case B: the information is distributed among several
tables (due to normalization)

 alternatives, e.q.:

(a) first perform inner product, then do a single loop
(b) collect the information with nested loops

« generator can produce several implementations,
provide an analysis for each and introduce a run-time
selection depending on parameter values

Ex. Choices: Autonomous Systems

different strategies to solve a task collectively

each strategy has individual costs for memory,
execution time, energy consumption

generator produces for each strategy code and a
formula for each property

user of the system can then decide which strategy is
best in a particular situation

* by quickly evaluating the cost formula, or
e by using an external solver

L]

L]

L]

L]

@

Ex. Choices: High-Perf. Computing

where to duplicate work/data, where to reuse
|/O: which data centralized, which distributed
how to distribute data and computations

parallel skeletons: provide given implementations and
according cost formulae manually

polytope model

« automatically generates code which is optimal
according to a cost function

« specialized for certain kinds of programs (loops)
and computational models (systolic arrays)

Variations of Automation

meta-language with dependent types: structure of
particular program fixed (reflected by proof)

skeletons: program structure basically fixed, but
unreflected choice between variations possible

polytope model: only the class of programs is fixed,
high variety of automatically producible code
depending on objective function

DSL-compilers: highly involved code generation,
sometimes very restricted tasks (e.g. FFTW)

Ex. Knowledge: Loops

« E=[FORi:=0 TO n DO A(i)]
e time [A(i)]=cC time(E) = (n+1)*c
e time [A(i)] = I"C time(E) = (n+1)*n/2%c
« space [A(i+1)] < space [A(i)]
space(kE) = space(A(0)) + c
+ different bounds and stride other than 1:

» convert into form above by substituting bounds and
argument of A before analysing the loop

Ex. Knowledge: Sequences

» E =[sort (sort xs)]
e generate E = generate [sort xs]
« time (generate E) = time (generate [sort xs])
» E =[mergesort xs]
e time (generate E)<c0*(n*log2n)+c1*n+c2
where n = length(xs)
» E =[map f(map g xs)]
« E=[map (f < g) xs]

 in parallel setting avoid unnecessary gather and scatter
and their communication times in the analysis

From Programs To Systems

» people might want to use DSLs to describe entire systems and
generate code for them, not just single programs, e.g.:

» cooperating autonomous systems
e parallel processing
 Interacting business applications

» we add the effects of the devices we need to operate the system
to the program

 this is obvious if we consider a simulation (interpretation)

* but generation is nothing but partial application of an
Interpreter

» a usual program analysis would neglect the effect of devices

« but when controlling a vehicle the energy consumption for the
CPU is less important than the one for the motor

Ex. Knowledge: Devices

@ Vehicle

energy(drive n meters) = energy(start) + n * c
» Camera

time [take picture, take picture] = ¢ + 2 * time [take picture]

a composition is more expensive than the sum of the single actions
* Harddisk

time(read block from hard disc)

< ¢1 * (endposition head - startposition head) + c2

It would be very difficult to derive such costs from a generated low-level
program alone!

Analysis during Generation

generation often comes with a kind of analysis

analysis of generated code without exploiting
knowledge of the generator is ,stupid®, because it
solves an artificial problem

several different approaches exist
e each has its merits at certain points

e none alone is sufficient to cover all the needs

a general way to integrate analysis and generation in
the software design process would be useful

Embedded Meta-DSL?

» is it possible to have a nice set of (say Haskell) definitions

« that can be instantiated for the mentioned domains,

« to generate code we would like to have, including dependently
typed or parallel code where desired,

« to integrate analyses of different mathematical models and
decision procedures?

» probably yes!
« Haskell provides a good amount of formal rigor while flexible

 the specification would not be part of the run time, so it would
not impose particular execution models

» put if this is not accepted as basis for software design
documents, then it will be practically useless

Ingredients of such a Meta-DSL

+ user-definable domains

 for programs

» for mathematical models, e.g. the polytope model
» way to specify costs for Layer O

+ defining a language at Layer n+1 in terms of a

language at Layer n, specifying a generator and an
according analysis

+ challenge: to provide a useful (infra-)structure by the
Meta-DSL without restricting the applicability

How to Deal with Object-Orientation

» automatically generated OO classes are difficult to reuse
safely, especially if generation is repeated after use with
different parameters

+ fortunately, use of inheritance is sometimes just for
configuration, i.e. no object creation is necessary and the
actual instance is fixed, i.e., can be replaced by a
procedure

» where useful (simulation, real world mappings) generate
classes, but do not inherit from them in other code

» analysis still difficult, but a problem of the person who
writes the generator

Summary

» analysis can benefit from generator knowledge
e application domains develop isolated solutions

» there exists a large variety of domain
knowledge that could be used explicitly (safely)

e it would be useful if analysis and generation
would become an integral part of the software
development process and the specification

 Haskell is a promising candidate as a Meta-
Meta-DSL for formalization of software designs

