Staging calculi
Oleg Kiselyov and Chung-chieh Shan

Our motivation: program generation
» flexible: scope mismatch, let insertion
» convenient: first-class delimited continuations
» safe: prevent scope extrusion
Our need: a typed staging calculi
» call by value, with small-step semantics
» splice open code and run closed code
» cross-stage persistence
Embarrassment of riches: AY, A7, A54, 10, 1059, A9 AL,
» Relationship unclear
» None satisfactory
» No effects



Goals

With hindsight:

1. Compile a definite reference to staged calculi, to reduce
rummaging through the literature.

» Which calculus supersedes which?
» How do they compare?

2. Design a common calculus or calculi substrate.

> At least share notation.
» Add or remove features such as ‘run’ and polymorphism.

3. Model real implementations such as MetaOCaml.
4. Compile a database of mechanized calculi.



Motivation

We want to prevent

let code = let x
let
Ix

» val code: (’a, int) code = .<v_1>.

ref .<1>. in
<fun v -=> .7 (x := .<v>.; .<()>.)>. in



Motivation

We want to prevent
let code = let x

ref .<1>. in

let _ = .<fun v > .7 (x := .<v>.; .<O>.)>.
Ix
» val code: (’a, int) code = .<v_1>.

.!code
» Unbound value v_1
Exception: Trx.TypeCheckingError.

This example is contrived; we can show a more realistic example.

These examples occur in MetaOCaml, which has mutable state,
exceptions, and first-class delimited continuations.

No real model.

in



Comparison

Typed Splice Run Persist  Callby Steps

AY no yes yes values name big
A9, AS% yes no yes no ? ?
AC yes yes no no ? ?
ACD yes yes some variables value small
A? yes yes yes yes name big
A{et yes yes yes yes name big




Comparison

Typed Splice Run Persist  Callby Steps

AY no yes yes values name big
A9, AS% yes no yes no ? ?
AC yes yes no no ? ?
ACD yes yes some variables value small
A? yes yes yes yes name big
A{et yes yes yes yes name big

Cross-stage persistence:
» only variables? only values?
» evaluated when code is built? is run?
» open code? .<fun x -> .%(.<x>.)>.
» restricted by type?

Mechanization: how to type the context (a).<fun x -> .~[1>.9



Goals

With hindsight:

1. Compile a definite reference to staged calculi, to reduce
rummaging through the literature.

» Which calculus supersedes which?
» How do they compare?

2. Design a common calculus or calculi substrate.

> At least share notation.
» Add or remove features such as ‘run’ and polymorphism.

3. Model real implementations such as MetaOCaml.
4. Compile a database of mechanized calculi.



