
1

Staging calculi
Oleg Kiselyov and Chung-chieh Shan

Our motivation: program generation
I flexible: scope mismatch, let insertion
I convenient: first-class delimited continuations
I safe: prevent scope extrusion

Our need: a typed staging calculi
I call by value, with small-step semantics
I splice open code and run closed code
I cross-stage persistence

Embarrassment of riches: λU, λ2, λS4, λ#, λ#2, λα, λi
let

I Relationship unclear
I None satisfactory
I No effects



2

Goals

With hindsight:
1. Compile a definite reference to staged calculi, to reduce

rummaging through the literature.
I Which calculus supersedes which?
I How do they compare?

2. Design a common calculus or calculi substrate.
I At least share notation.
I Add or remove features such as ‘run’ and polymorphism.

3. Model real implementations such as MetaOCaml.

4. Compile a database of mechanized calculi.



3

Motivation

We want to prevent

let code = let x = ref .<1>. in
let _ = .<fun v -> .~(x := .<v>.; .<()>.)>. in
!x

I val code: (’a, int) code = .<v_1>.

.!code
I Unbound value v_1

Exception: Trx.TypeCheckingError.

This example is contrived; we can show a more realistic example.

These examples occur in MetaOCaml, which has mutable state,
exceptions, and first-class delimited continuations.

No real model.



4

Motivation

We want to prevent

let code = let x = ref .<1>. in
let _ = .<fun v -> .~(x := .<v>.; .<()>.)>. in
!x

I val code: (’a, int) code = .<v_1>.
.!code
I Unbound value v_1

Exception: Trx.TypeCheckingError.

This example is contrived; we can show a more realistic example.

These examples occur in MetaOCaml, which has mutable state,
exceptions, and first-class delimited continuations.

No real model.



5

Comparison

Typed Splice Run Persist Call by Steps

λU no yes yes values name big
λ2, λS4 yes no yes no ? ?
λ# yes yes no no ? ?
λ#2 yes yes some variables value small
λα yes yes yes yes name big
λi

let yes yes yes yes name big

Cross-stage persistence:
I only variables? only values?
I evaluated when code is built? is run?
I open code? .<fun x -> .%(.<x>.)>.
I restricted by type?

Mechanization: how to type the context

(α)

.<fun x -> .~[]>.

α



6

Comparison

Typed Splice Run Persist Call by Steps

λU no yes yes values name big
λ2, λS4 yes no yes no ? ?
λ# yes yes no no ? ?
λ#2 yes yes some variables value small
λα yes yes yes yes name big
λi

let yes yes yes yes name big

Cross-stage persistence:
I only variables? only values?
I evaluated when code is built? is run?
I open code? .<fun x -> .%(.<x>.)>.
I restricted by type?

Mechanization: how to type the context (α).<fun x -> .~[]>.α



7

Goals

With hindsight:
1. Compile a definite reference to staged calculi, to reduce

rummaging through the literature.
I Which calculus supersedes which?
I How do they compare?

2. Design a common calculus or calculi substrate.
I At least share notation.
I Add or remove features such as ‘run’ and polymorphism.

3. Model real implementations such as MetaOCaml.

4. Compile a database of mechanized calculi.


