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Introduction

This talk is about IDRIS, a programming language with
dependent types.

• cabal update; cabal install idris

• http://idris-lang.org/

• http://idris-lang.org/documentation/

In particular, we will see by example how to use IDRIS to build
Embedded Domain Specific Languages. Code is at:

http://idris-lang.org/documentation/edsl-talk
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The IDRIS Programming Language

IDRIS is a general purpose pure functional programming
language, with support for theorem proving. Features include:

• Full dependent types, dependent pattern matching
• Dependent records
• Type classes (Haskell style)

◦ Numeric overloading, Monads, do-notation, idiom
brackets, . . .

• Tactic based theorem proving
• High level constructs: where, case, with, monad

comprehensions, syntax overloading
• Totality checking, cumulative universes
• Interfaces for systems programming (e.g. C libraries)
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Dependent Types in IDRIS

IDRIS syntax is influenced by Haskell. Some data types:

data Nat = O | S Nat

infixr 5 :: -- Define an infix operator

data Vect : Set -> Nat -> Set where -- List with size

Nil : Vect a 0

(::) : a -> Vect a k -> Vect a (1 + k)

The type of a function over vectors describes invariants of the
input/output lengths, e.g..

append : Vect a n -> Vect a m -> Vect a (n + m)

append Nil ys = ys

append (x :: xs) ys = x :: append xs ys
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Dependent Types in IDRIS

We can use Haskell style type classes to constrain polymorphic
functions, e.g., pairwise addition a vectors of numbers:

total

vAdd : Num a => Vect a n -> Vect a n -> Vect a n

vAdd Nil Nil = Nil

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys

(Aside: The total keyword means that it is an error if the
totality checker cannot determine that the function is total)
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Demonstration
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Conclusions

IDRIS is a language specifially designed for EDSL
implementation:

• do-notation, idiom brackets
• Syntax overloading

We have seen how to use dependent types to build EDSLs with
expressive type systems

• EDSL captures state properties of systems programs
• Syntax overloading for ease of application development

◦ Provide an abstraction to hide the details of the type
system
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Future Work

What domains might benefit from this approach?
• Security protocols?
• Type-safe, secure web programming?

Software engineering concerns
• Compositionality and scalability
• Modularity and reuse
• Theorem proving is often necessary: domain-specific

decision procedures?
• Rich type systems are highly suited to interactive

development — what tool support can we provide?

Compiler efficiency
• Currently compiles via C — investigate e.g. LLVM. . .
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