Embedded Domain Specific Languages by Syntax
Overloading

WG2.11, Halmstad, 25th June 2012

ecb1l0@t - andr ews. ac. uk

University of St Andrews

Edwin Brady

EXaEN
(5=]

%Y »Sicsa*

4

sicsa*

IDRIS=p. 1

Introduction

This talk is about IDRIS, a programming language with
dependent types.
cabal update; cabal install i1dris
http://1dris-1Iang.org/
http://1dris-I1ang.org/docunentation/
In particular, we will see by example how to use IDRIS to build
Embedded Domain Specific Languages. Code is at:

http://1dris-1ang.org/docunentation/edsl-talKk

»Sicsa*

IDRIS = D. 2

http://idris-lang.org/
http://idris-lang.org/documentation/
http://idris-lang.org/documentation/edsl-talk

The IDRIS Programming Language

IDRIS IS a general purpose pure functional programming

language, with support for theorem proving. Features include:

»Sicsa*

Full dependent types, dependent pattern matching
Dependent records

Type classes (Haskell style)

Numeric overloading, Monads, do-notation, idiom
brackets, ...

Tactic based theorem proving

High level constructs: wher e, case, w t h, monad
comprehensions, syntax overloading

Totality checking, cumulative universes
Interfaces for systems programming (e.g. C libraries)

)

IDRIS —D. 3

Dependent Types in IDRIS

IDRIS syntax is influenced by Haskell. Some data types:
data Nat = O | S Nat

Infixr 5 :: -- Define an infix operator
data Vect : Set -> Nat -> Set where -- List with size
Nil . Vect a 0

(::) : a->Vect ak ->Vect a (1 + k)

The type of a function over vectors describes invariants of the
iInput/output lengths, e.g..

append : Vect a n ->Vect am->\Vect a (n +m
append Ni | yS = VyS
append (x :: XS) ys = X ::. append Xs ys

»Sicsa*

IDRIS=D. 4

Dependent Types in IDRIS

We can use Haskell style type classes to constrain polymorphic
functions, e.g., pairwise addition a vectors of numbers:

t ot al
vAdd : Numa => Vect a n -> Vect a n -> Vect a n
vAdd Ni | Ni | = N |

VAdd (x :: xs) (y :: ys) = x + vy :: VAdd xs ys

(Aside: The t ot al keyword means that it is an error if the
totality checker cannot determine that the function is total)

»Sicsa*

IDRIS=D. 5

Demonstration

»sicsa*

Conclusions

IDRIS Is a language specifially designed for EDSL
Implementation:

do-notation, idiom brackets
Syntax overloading

We have seen how to use dependent types to build EDSLs with
expressive type systems

EDSL captures state properties of systems programs

Syntax overloading for ease of application development

Provide an abstraction to hide the detalls of the type
system

»Sicsa*

IDRIS=D. 7

Future Work

What domains might benefit from this approach?
Security protocols?
Type-safe, secure web programming?
Software engineering concerns
Compositionality and scalability
Modularity and reuse

Theorem proving is often necessary: domain-specific
decision procedures?

Rich type systems are highly suited to interactive
development — what tool support can we provide?

Compiler efficiency
Currently compiles via C — investigate e.g. LLVM. ..

»Sicsa*

IDRIS —D. 8

	Introduction
	The Idris {} Programming Language
	Dependent Types in Idris {}
	Dependent Types in Idris {}
	Conclusions
	Future Work

