
Embedded Domain Specific Languages by Syntax
Overloading

WG2.11, Halmstad, 25th June 2012

ecb10@st-andrews.ac.uk

University of St Andrews

Edwin Brady

IDRIS – p. 1



Introduction

This talk is about IDRIS, a programming language with
dependent types.

• cabal update; cabal install idris

• http://idris-lang.org/

• http://idris-lang.org/documentation/

In particular, we will see by example how to use IDRIS to build
Embedded Domain Specific Languages. Code is at:

http://idris-lang.org/documentation/edsl-talk

IDRIS – p. 2

http://idris-lang.org/
http://idris-lang.org/documentation/
http://idris-lang.org/documentation/edsl-talk


The IDRIS Programming Language

IDRIS is a general purpose pure functional programming
language, with support for theorem proving. Features include:

• Full dependent types, dependent pattern matching
• Dependent records
• Type classes (Haskell style)

◦ Numeric overloading, Monads, do-notation, idiom
brackets, . . .

• Tactic based theorem proving
• High level constructs: where, case, with, monad

comprehensions, syntax overloading
• Totality checking, cumulative universes
• Interfaces for systems programming (e.g. C libraries)

IDRIS – p. 3



Dependent Types in IDRIS

IDRIS syntax is influenced by Haskell. Some data types:

data Nat = O | S Nat

infixr 5 :: -- Define an infix operator

data Vect : Set -> Nat -> Set where -- List with size

Nil : Vect a 0

(::) : a -> Vect a k -> Vect a (1 + k)

The type of a function over vectors describes invariants of the
input/output lengths, e.g..

append : Vect a n -> Vect a m -> Vect a (n + m)

append Nil ys = ys

append (x :: xs) ys = x :: append xs ys

IDRIS – p. 4



Dependent Types in IDRIS

We can use Haskell style type classes to constrain polymorphic
functions, e.g., pairwise addition a vectors of numbers:

total

vAdd : Num a => Vect a n -> Vect a n -> Vect a n

vAdd Nil Nil = Nil

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys

(Aside: The total keyword means that it is an error if the
totality checker cannot determine that the function is total)

IDRIS – p. 5



Demonstration

IDRIS – p. 6



Conclusions

IDRIS is a language specifially designed for EDSL
implementation:

• do-notation, idiom brackets
• Syntax overloading

We have seen how to use dependent types to build EDSLs with
expressive type systems

• EDSL captures state properties of systems programs
• Syntax overloading for ease of application development

◦ Provide an abstraction to hide the details of the type
system

IDRIS – p. 7



Future Work

What domains might benefit from this approach?
• Security protocols?
• Type-safe, secure web programming?

Software engineering concerns
• Compositionality and scalability
• Modularity and reuse
• Theorem proving is often necessary: domain-specific

decision procedures?
• Rich type systems are highly suited to interactive

development — what tool support can we provide?

Compiler efficiency
• Currently compiles via C — investigate e.g. LLVM. . .

IDRIS – p. 8


	Introduction
	The Idris {} Programming Language
	Dependent Types in Idris {}
	Dependent Types in Idris {}
	Conclusions
	Future Work

