
N-Synchronous Kahn Networks
A Relaxed Model of Synchrony for Real-Time Systems

A Domain-Specific Program Generation Approach

or Topiarization is Better Than Deforestation
or Topiary Rather Than Listless Evaluation

Albert Cohen1, Marc Duranton2, Christine Eisenbeis1,
Claire Pagetti1,4, Florence Plateau3 and Marc Pouzet3

IFIP WG2.11

1: INRIA, Orsay, France
2: PHILIPS NatLabs, Eindhoven, The Netherlands
3: University of Paris-Sud, Orsay, France
4: ONERA, Toulouse, France

1

Context

• Video intensive applications (TV boxes, medical systems)
tera-operations per second (on pixel components) is typical

• Ensure three properties: hard real-time and performance and safety

Implementations

• Today: specific hardware (ASIC)

• Evolution: multi-clock asynchronous architectures, mixing hardware/software
because of costs, variability of supported algorithms

Design and programming tools

• General purpose languages and compilers are not well adapted

• Kahn Networks (KN) is common practice in the field

2

A typical example: the Downscaler

High definition (HD) → Standard definition (SD)

1920× 1080 pixels 720× 480

Horizontal filter: number of pixels in a line from 1920 pixels downto 720 pixels,

Vertical filter: number of lines from 1080 downto 480

hf vf

reorder

HD input SD output

Real-Time Constraints

Input and output processes: 30Hz.

HD pixels flow at 30× 1920× 1080 = 62, 208, 000Hz

SD pixels flow at 30× 720× 480 = 10, 368, 000Hz (6 times slower)

3

Our Goal

Define a programming language dedicated to those Kahn Networks providing:

• a modular functional description

• a modular description of the timing requirements

with a semantics and a compiler which statically guarantees four important
properties. E.g., on the downscaler:

• a proof that, according to worst-case time conditions, the frame and pixel rate
will be sustained

• a proof that the system executes in bounded memory

• an evaluation of the delay introduced by the downscaler in the video processing
chain, i.e., the delay before the output process starts receiving pixels

• an evaluation of memory requirements, to store data within the processes, and
to buffer the stream produced by the vertical filter in front of the output
process

4

What about Synchronous Languages?

• Dedicated to hard real-time critical systems

• Static analysis, verification and testing tools

• Synchrony is ensured by a type-system for clocks: a clock calculus

• It allows to program Synchronous Kahn Networks

• Type-directed generation of custom hardware/software system with static
guarantees (real-time and resource constraints)

5

But too restrictive for our video applications

?

t+

w
h
e
n

w
h
e
n

y

z

x

0 1

1 10 0

?

• Streams must be synchronous when composed (y+z is rejected by the clock
calculus)

z

y

• Adding buffer code (by hand) is feasible but hard and error-prone

• Can we compute it automatically and obtain regular synchronous code?

We need a relaxed model of synchrony and relaxed clock calculus

6

N-Synchronous Kahn Networks

• Propose a programming model based on a relaxed notion of synchrony

• Yet compilable to some synchronous code

• Allows to compose programs as soon as they can be made synchronous through
the insertion of a bounded buffer

z

buff[1]

1 1 1 1 1 1 1 1

1 1 1 1 11 1 1

0 0 0 0 0 0

0 00 0 0 0 0

y

• Based on the use of infinite ultimately periodic clocks

• A precedence relation between clocks ck1 <: ck2

7

Infinite Ultimately Periodic Clocks

Introduce Q2 as the set of infinite periodic binary words. Coincides with rational
2-adic numbers

(01) = 01 01 01 01 01 01 01 01 01 . . .

0(1101) = 0 1101 1101 1101 1101 1101 1101 1101 . . .

• 1 stands for the presence of an event

• 0 for its absence

Definition:

w ::= u(v) where u ∈ (0 + 1)∗ and v ∈ (0 + 1)+

8

Causality order and Synchronisability

Precedence relation: w1 � w2

• “1s from w1 arrive before 1s from w2”

• � is a partial order which abstracts the causality order between streams

• (Q2,�,t,u) is a lattice

Synchronisability:
Two infinite periodic binary words w and w′ are synchronisable, noted w ./ w′ iff it
exists d ∈ N such that w � 0dw′ and d′ ∈ N such that w′ � 0d′

w.

1. 11(01) and (10) are synchronisable

2. (010) and (10) are not synchronisable since there are too much reads or too
much writes (infinite buffers)

Subsumption (sub-typing): w1 <: w2 ⇐⇒ w1 ./ w2 ∧ w1 � w2

9

Multi-sampled Systems (clock sampling)

c ::= w | c on w w ∈ (0 + 1)ω

c on w denotes a subsampled clock.

c on w is the clock obtained in advancing in w at the pace of clock c. E.g.,
1(10) on (01) = (0100).

base 1 1 1 1 1 1 1 1 1 1 ... (1)

p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

base on p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

p2 0 1 0 1 0 1 ... (01)

(base on p1) on p2 0 1 0 0 0 1 0 0 0 1 ... (0100)

Proposition 1 (on-associativity) Let w1, w2 and w3 be three infinite binary
words. Then w1 on (w2 on w3) = (w1 on w2) on w3.

10

Computing with Periodic Clocks

In the case of infinite periodic binary words, precedence relation, synchronizability,
equality can be decided in bounded time

Synchronizability: Two infinite periodic binary words u(v) and u′(v′) are
synchronizable, noted u(v) ./ u′(v′) iff they have the same rate, i.e., |v|1

|v′|1 = |v|
|v′| .

Equality: Let w = u(v) and w′ = u′(v′). We can always write w = a(b) and
w′ = a′(b′) with |a| = |a′| = max(|u|, |u′|) and |b| = |b′| = lcm(|v|, |v′|)

Delays and Buffers: can be computed practically after normalisation

The set of infinite periodic binary words is closed by sampling (on), delaying (pre)
and point-wise application of a boolean operation

w ::= u(v)

c ::= w | c on w | not c | pre c | . . .

11

A Synchronous Data-flow Kernel

• Reminiscent to Lustre and Lucid Synchrone

• receive a standard (strictly) synchronous semantics

e ::= x | i | e where x = e | e(e)
| e fby e | e when pe | merge pe e e

d ::= let node f(x) = e | d; d

dp ::= period p = pe | dp; dp

pe ::= p | w | pe on pe | not pe | . . .

• fby is the initialized delay (or register)

• when is the sampling operator allowing to extract a sub-stream from a stream

• merge is the combination operator allowing to combine two complementary
streams (with opposite clocks)

12

The Downscaler

let period c = (10100100)

let node hf p = o where

rec o2 = 0 fby p

and o3 = 0 fby o2

and o4 = 0 fby o3

and o5 = 0 fby o4

and o6 = 0 fby o5

and o = f (p,o2,o3,o4,o5,o6) when c

val hf : ’a -> ’a on c

let node main i = o where

rec t = hf i

and (i1,i2,i3,i4,i5,i6) = reorder t

and o = vf (i1,i2,i3,i4,i5,i6)

f

w
h
e
n

1 0 01 0 0 1 0

o

p

• The clock signature of each process abstracts its timing behavior

• Clock calculus: what is the clock signature of main?

13

Clock calculus

σ ::= ∀α.σ | ct
ct ::= ct → ct | ct× ct | ck
ck ::= ck on pe | α
H ::= [x1 : σ1, . . . , xm : σm]

P ::= [p1 : w1, . . . , pn : wn]

Judgment: P,H ` e : ct “expression e receive clock type ct in environments H

and P”

14

From 0-Synchrony to N-Synchrony

0-Synchrony:

• 0-synchrony can be checked using standard Milner-type system
[ICFP’96,Emsoft’03]

• only need clock equality (and clocks are not necessarily periodic)

H,P ` e1 : ck H,P ` e2 : ck

H,P ` op(e1, e2) : ck

N-Synchrony:

• extend the basic clock calculus of a synchronous language with a sub-typing
rule:

P,H ` e : ck on w w <: w′

(SUB)

P,H ` e : ck on w′

• defines the synchronisation points where buffer code should be inserted

15

An Example

+

w
h
e
n

w
h
e
n

y

z

x

0 1

1 10 0

t

1−buffer

w
h

e
n

w
h

e
n

z

x

0 1

1 10 0

t+

let node f(x) = t where t = (x when (1100)) + (x when (10))

(1100) and (10) can be synchronized using a buffer of size 1. Indeed:

P,H ` x when (1100)) : α on (1100) (1100) <: (10)

P,H ` x when (1100) : α on (10)

Finaly, f : ∀α.α → α on (01)
and the 1-buffer buffer[1]: ∀α.α on (1100) → α on (1010)

16

Translation into 0-Synchronous Programs

P,H ` e : ck on w ⇒ e′ w <: w′

(TRANSLATION)

P,H ` e : ck on w′ ⇒ bufferw,w′(e′)

bufferw,w′ : ∀α.α on w → α on w′

Theorem (correctness): Any well clocked (N -synchronous) program can be
transformed into a 0-synchronous program

This is a constructive proof: sub-typing points define where some buffering is
necessary

The translated program can be checked with the basic clock calculus

17

Algorithm (constraint resolution)

The sub-typing system is not deterministic and is thus not an algorithm

Standard solution:

• apply the (SUB) rule at every program construction

• generate a set of sub-typing constraints {ck1 <: ck′1, . . . , ckn <: ck′n}

• rely on a resolution algorithm

Resolution amounts to rewriting (simplifying) the set of constraints until we get the
empty set

Theorem (completeness): For any expression e, and for any period and clock
environments P and H, if e has an admissible clock type in P,H for the relaxed
clock calculus, then the type inference algorithm computes a clock ct verifying
P,H ` e : ct

18

Clock sampling (gating) vs Buffering

In general, there exists an infinite number of solutions.

+

f

g

f : ∀α1.α1 → α1 on (1100)

g : ∀α2.α2 → α2 on (10)

(+) : ∀α3.α3 × α3 → α3

We have to solve the constraint: α1 on (1100) <: α3 and α2 on (10) <: α3

Clock sampling: (unification)
find v1 and v2 st α1 = α4 on v1 and α2 = α4 on v2

Solution: α4 on (10111) on (1100) = α4 on (10100) = α3

α4 on (11110) on (10) = α4 on (10100) = α3

No buffering but the base clock must be faster

Buffering: (sub-typing)
α1 = α4 and α2 = α4, α4 on (1100) <: α3 and α4 on (10) <: α3

α4 on (1100) t (10) = α4 on (10) = α3

A 1-buffer is needed
19

(EQUAL)

S S
h α′

1 on V(w1, w2)/α1

α′
2 on V′(w1, w2)/α2

i
if S = S′ + I1 + I2,

I1 = {α1 on w1 <: ck1} or {ck1 <: α1 on w1}
I2 = {α2 on w2 <: ck2} or {ck2 <: α2 on w2}

,
α1 6= α2

w1 6= w2

(CYCLE)
S + {α on w1 <: α on w2} S

if w1 <: w2

(SUP)
S + {α on w1 <: α′, α on w2 <: α′} S + {α on w1 t w2 <: α′}
if w1 ./ w2

(INF)
S + {α′ <: α on w1, α′ <: α on w2} S + {α′ <: α on w1 u w2}
if w1 ./ w2

(CUT)
S + {α1 on w <: α2 on w} S + {α1 <: α3 on u1, α3 on u2 <: α2}
if α1 6= α2, u1 = Umax(w), u2 = Umin(w)

(FORK)
S + {α <: α1 on w, α <: α2 on w} S[α3 on u on w/α] + {α3 on u <: α1, α3 on u <: α2}
if α1 6= α2, u = Umin(w)

(JOIN)
S + {α1 on w <: α, α2 on w <: α} S[α3 on u on w/α] + {α1 <: α3 on u, α2 <: α3 on u}
if α1 6= α2, u = Umax(w)

(SUBST)
S ⊕ I S[ck/α]

if I = {α <: ck} or {ck <: α}, α /∈ FV(ck)

20

Conclusion

• N-Synchronous Kahn Networks introduce a relaxed model of synchrony

• extended synchrononous framework: automatic generation of the synchronous
buffers which are semantically (as defined by Kahn) guaranteed correct

• a relaxed clock calculus where buffering corresponds to sub-typing

• N -synchronous programs can be translated into 0-synchronous ones

• extend the expressive power of synchronous languages, yet allowing to do
compilation, simulation and verification after translation

• Lustre programs are 0-Synchronous Kahn Networks

• Kahn networks are ∞-Synchronous Kahn Networks

21

Current and Future Work

• algebraic characterisation and symbolic representation of clocks

• implementation inside an existing synchronous language

• optimization and architecture considerations (buffer size, locality, clock gating)

• forgetting buffering mechanism, periodic clocks are useful for dealing with
several implementations of the same function:

– parallel vs pipelined vs serial computation

– going from a version to an other changes clocks

– how to prove them to be equivalent (or to derive them from the same
program) according to resource constraints?

22

