Performance-Influence Models: Prediction, Optimization, Debugging

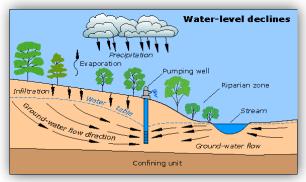
Norbert Siegmund

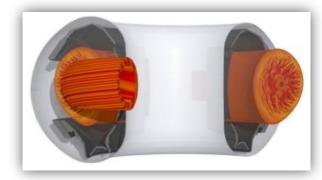
Alexander Grebhahn

Sven Apel

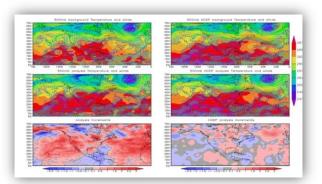
Christian Kästner

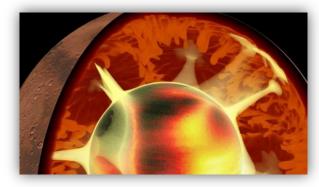
Even Domain Experts Struggle with Performance!



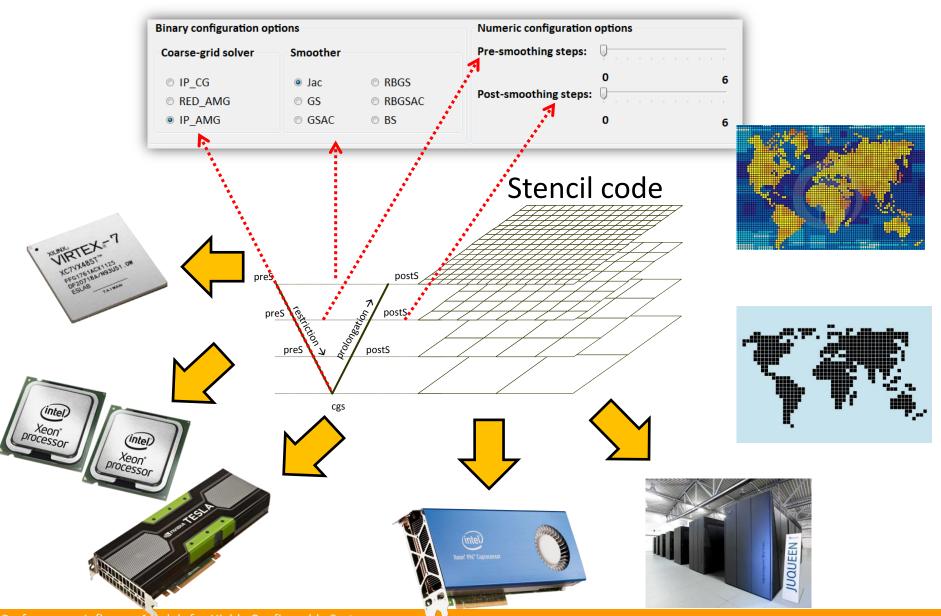


HPC Experts Meeting at Dagstuhl





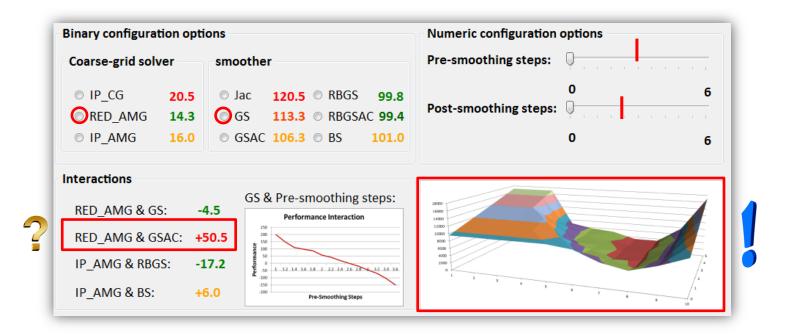
Their Problem: Finding the Optimal Configuration for a Given Hardware Platform?



What is the Influence of Configuration Options on Performance?



Vision: Performance-Influence Models



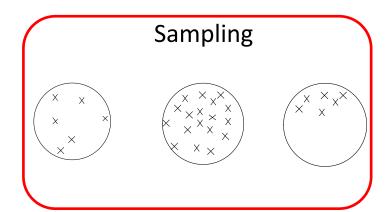
Determine the influence of configuration options and their interactions and use it for:

- Understanding
- Debugging

– Prediction and optimization = 219.9

Performance-Influence Models for Highly Configurable Systems

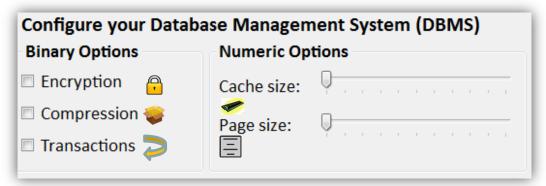
Learning Procedure



Learning

Performance-Influence Model

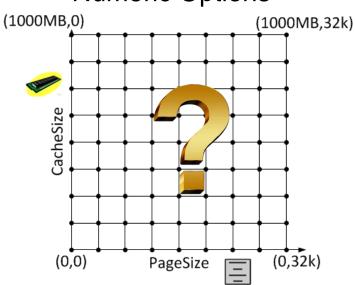
Sampling Binary and Numeric Options



Binary Options

(1,0) (1,1) Function (0,1) (0,0) Compression (0,1)

Numeric Options



Exponential number!

Structured sampling approaches for the different kinds of options

Heuristics for Binary-Option Sampling

- Random?
 - Unlikely to select a valid configuration
 - Locally clustered solutions using SAT

Siegmund et al., ICSE'12

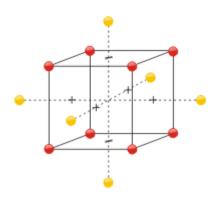
- Heuristics
 - Option-Wise (OW): {♠}, {♠}, {♠}, {♠}, {♠}
 - Negative Option-Wise (nOW):

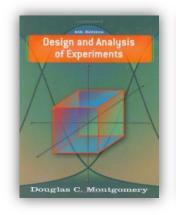
− Pair-Wise (PW) : {♠♥>}, {♥♥>}, {♠♥}, {♠♥},

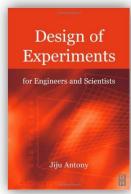
Numeric-Option Sampling (Experimental Designs)

Fractional factorial designs

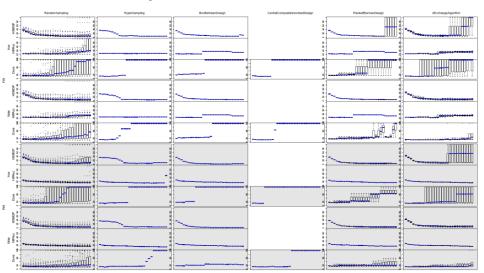
Optimal designs



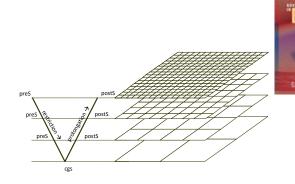




Pre-study:



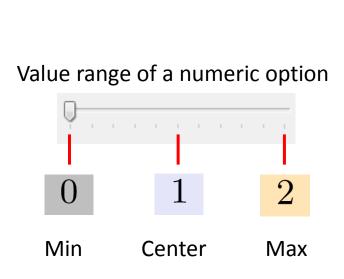
Multi-grid solver as subject systems

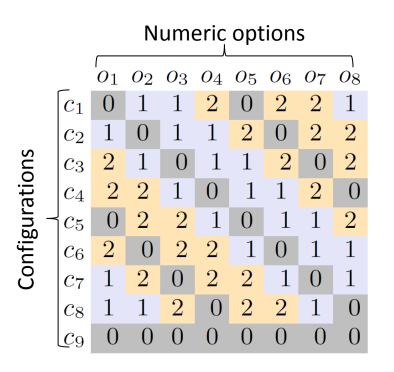


Plackett-Burman Design as best design

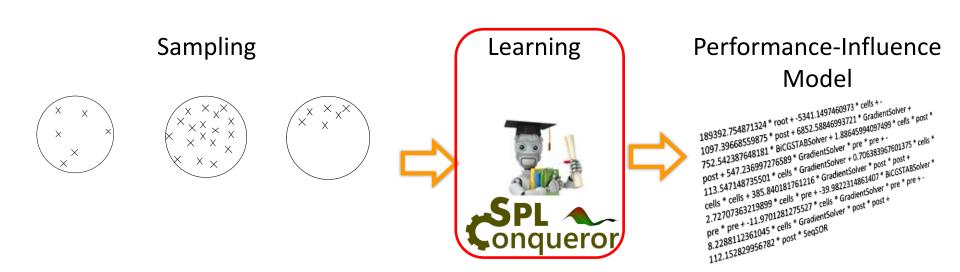
Plackett-Burman Design (PBD)

- Minimizes the variance of the estimates of the independent variables (numeric options)
- ...while using a limited number of measurements
- Design specifies seeds depending on the number of experiments to be conducted (i.e., configurations to be measured)





Learning Procedure



Regression Learning

Exponential number!

Unlimited candidates!

Individual Options

Interactions

Functions

			•		
(P		
	1	0	0	20	0
	0	1	1	50	16
	1	0	1	100	32
	1	1	0	50	32
	1	1	1	20	32
	0	0	0	100	0
	1	1	1	100	16
	$^*_{eta_1}$	$^*_{eta_2}$	$^*_{eta_3}$	$^*_{eta_4}$	$^*_{eta_5}$
	102.4	04.2	544	5 4	4.2

			2	Log(三)
0	0	0	400	N/A
0	0	800	2500	1.2
0	0	0	10000	0.9
1	0	1600	2500	1.5
1	1	640	400	1.5
0	0	0	10000	N/A
1	1	1600	10000	1.2
$\overset{*}{\beta_{6}}$	β_7	*_8	* eta_9	$\stackrel{*}{eta}_{10}$

•	
	Perf.
	833
	411
	290
=	799
	753
	514
	416
	Error:
	41%

Configurations

102.4	84.3	54.1	5.4	1.3

56.6

54.2

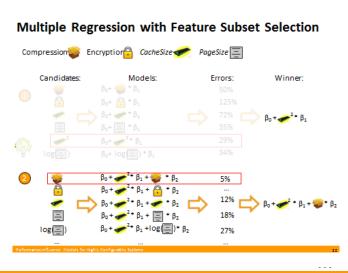
-14.1	-5.4

130.3 83.5

81.3

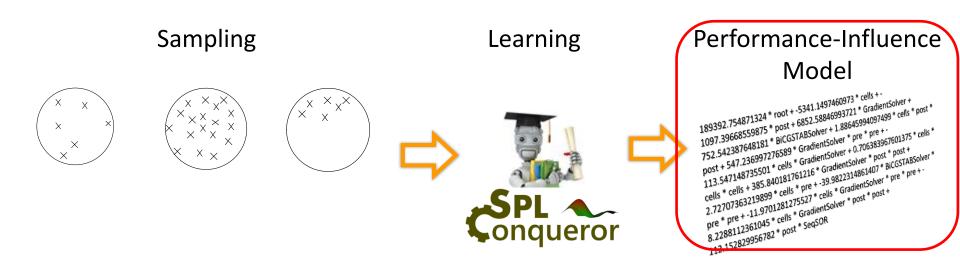
Multiple Regression with Feature Subset Selection

- Extend model in a stepwise manner
- Probe different candidates
 - Individual influences, interactions, functions

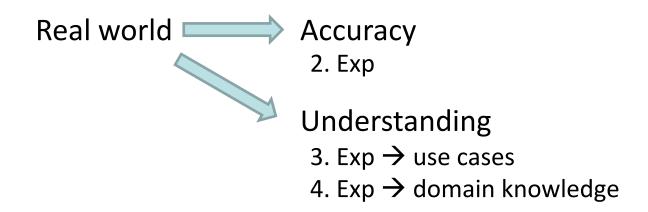


Siegmund et al., FSE'15

Learning Procedure



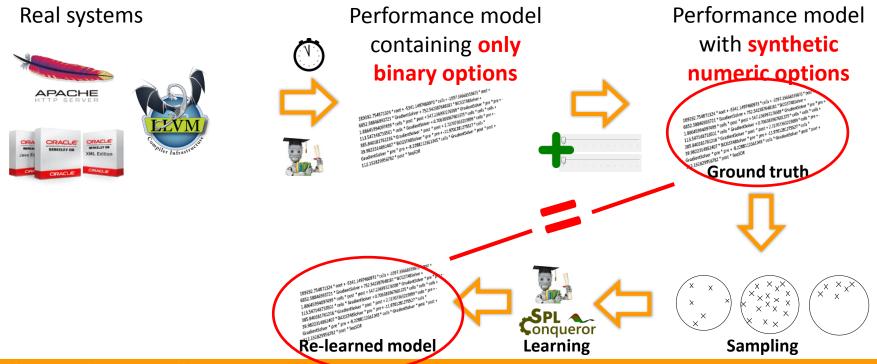
Experimental Evaluation



1. Experiment: Finding the Actual Influences

RQ: Do we find the actually existing influences and interactions?

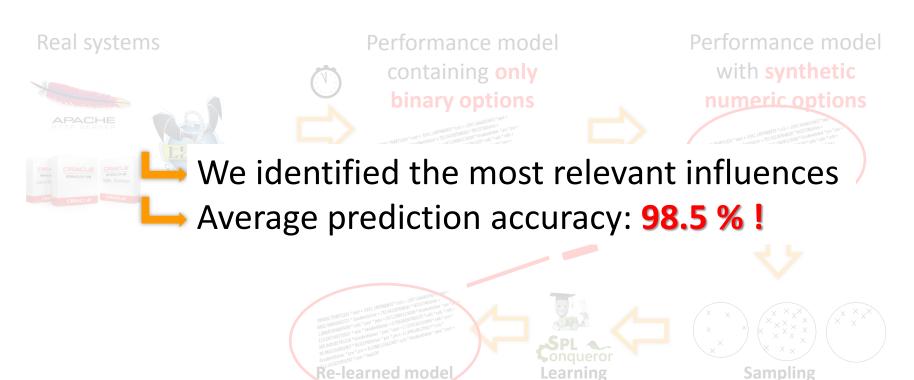
• Design:



1. Experiment: Finding the Actual Influences

RQ: Do we find the actually existing influences and interactions?

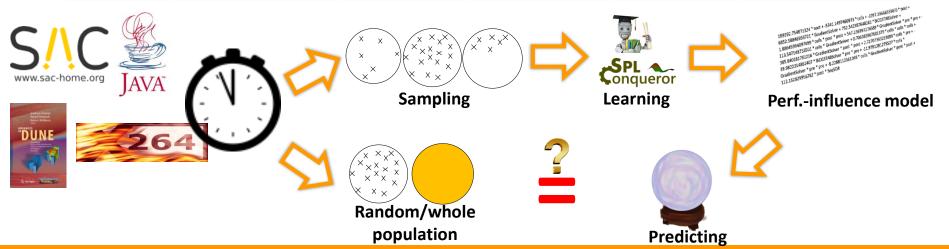
• Design:



2. Experiment: Performance Prediction

RQ: Which combination of sampling approaches achieve the highest prediction accuracy?

System	Domain	# Binary Opt.	# Numeric Opt.	# Constraints	# Configs
Dune MGS	Multi-Grid Solver	8	3	20	2 304
HIPAcc	Image Processing	31	2	416	13 485
HSMGP	Multi-Grid Solver	11	3	45	3 456
JavaGC	Runtime Env.	12	23	4	10 ³¹
SaC	Compiler	53	7	10	10 ²³
x264	Video Encoder	8	13	0	10 ²⁷



2. Experiment: Performance Prediction

RQ: Which combination of sampling approaches achieve the highest prediction accuracy?

Dune MGS	Multi-Grid Solver	8	3	20	2 304
HIPAcc	Image Processing	31	2	416	13 485
HSMGP	Multi-Grid Solver	11	3	45	3 456
JavaGC	Runtime Env	12	22	Л	1031

Experimental designs are better than random

Sampling

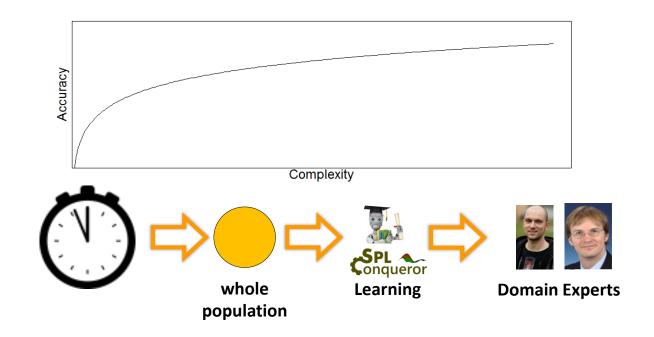
Perf.-influence model

3. Experiment: Accuracy vs. Complexity

Collaboration with:

Sergiy Kolesnikov

RQ: Is it necessary to learn accurate but complex models?



It depends on the use case. Simple models help to identify the most relevant influences.

4. Experiment: Validation of Domain Knowledge

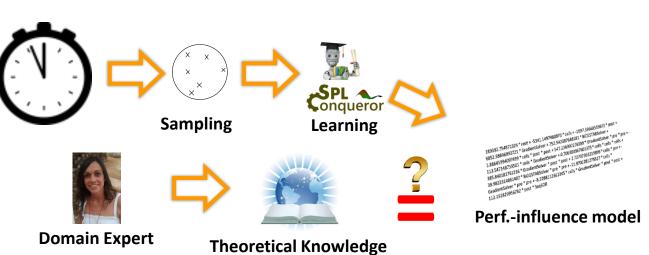
Collaboration with:

Carmen Rodrigo

Francisco Gaspar

RQ: Are we able to validate domain knowledge using a

model?



Validate domain knowledge

Findings and Future Work

https://github.com/nsiegmun/SPLConqueror http://fosd.de/SPLConqueror/