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Even Domain Experts Struggle with Performance! 

2 

HPC Experts Meeting at Dagstuhl 
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Their Problem: Finding the Optimal Configuration for a Given 
Hardware Platform? 
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What is the Influence of Configuration Options on Performance? 
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Vision: Performance-Influence Models 

Determine the influence of configuration options and their 
interactions  

– Understanding 

– Debugging 

– Prediction and optimization 
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14.3 + 113.3 - 4.5 - 73.9 + 171.7  
= 219.9 

and use it for: 
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Learning Procedure 
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Sampling Learning Performance-Influence 
Model 
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Sampling Binary and Numeric Options 

Binary Options Numeric Options 

Structured sampling approaches for the 
different kinds of options 
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Exponential number! 
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Heuristics for Binary-Option Sampling 

• Random? 

– Unlikely to select a valid configuration 

– Locally clustered solutions using SAT 

 

 

• Heuristics 

– Option-Wise (OW):  {    }, {     }, {    }, {     }, {}  

– Negative Option-Wise (nOW):  

 {                   }, {              }, {               }, {             }, {              } 

– Pair-Wise (PW) : {          }, {         }, {        }, {       }, {         },  

{           } 
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Siegmund et al., ICSE‘12 
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Numeric-Option Sampling (Experimental Designs) 

• Fractional factorial designs 

• Optimal designs 

 

 

• Pre-study:  

 

 

 

 

  

   Plackett-Burman Design as best design 
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Multi-grid solver as subject systems 
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Plackett-Burman Design (PBD) 

• Minimizes the variance of the estimates of the independent 
variables (numeric options)  

• …while using a limited number of measurements 

• Design specifies seeds depending on the number of experiments to 
be conducted (i.e., configurations to be measured) 
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Min Center Max 

Value range of a numeric option 
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Learning Procedure 
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Sampling Learning Performance-Influence 
Model 
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Regression Learning 
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Log(     ) Perf. 
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514 

416 

= 

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 

Individual Options Interactions Functions 

102.4 84.3 54.1 5.4 1.3 

132.3 81.3 56.6 3.5 1.9 -14.1 -5.4 2.4 

130.3 83.5 54.2 0.01 0 -14.1 -5.4 1.4 2.1 8.8 

Error: 

41% 
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Exponential number! 

Unlimited candidates! 
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Multiple Regression with Feature Subset Selection 

Compression Encryption CacheSize PageSize 

Candidates: Models: Errors: Winner: 

1 
β0+        * β1 50% 

125% 
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35% 
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β0+ log(      ) * β1 

β0 +         * β1 +       * β2 

Extend model in a stepwise manner 

Probe different candidates 

• Individual influences, interactions, functions 

Siegmund et al., FSE‘15 



Performance-Influence Models for Highly Configurable Systems 

Learning Procedure 
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Sampling Learning Performance-Influence 
Model 



Performance-Influence Models for Highly Configurable Systems 

Experimental Evaluation 
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Synthetic  Prerequisite 
1. Exp 

Accuracy 

Understanding 

2. Exp 

3. Exp à use cases 
4. Exp à domain knowledge  

Real world 
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1. Experiment: Finding the Actual Influences 

RQ: Do we find the actually existing influences and 
interactions? 

 

• Design: 
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Real systems Performance model 
containing only 
binary options 

Performance model 
with synthetic 

numeric options 

Sampling Learning Re-learned model 

Ground truth 
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1. Experiment: Finding the Actual Influences 

RQ: Do we find the actually existing influences and 
interactions? 

 

• Design: 

17 

Real systems Performance model 
containing only 
binary options 

Performance model 
with synthetic 

numeric options 

Sampling Learning Re-learned model 

Ground truth 
We identified the most relevant influences 
Average prediction accuracy: 98.5 % ! 



Performance-Influence Models for Highly Configurable Systems 

2. Experiment: Performance Prediction 
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RQ: Which combination of sampling approaches achieve 
the highest prediction accuracy? 

System Domain # Binary Opt. # Numeric Opt. # Constraints # Configs 

Dune MGS Multi-Grid Solver 8 3 20 2 304 

HIPAcc Image Processing 31 2 416 13 485 

HSMGP Multi-Grid Solver 11 3 45 3 456 

JavaGC Runtime Env. 12 23 4 1031 

SaC Compiler 53 7 10 1023 

x264 Video Encoder 8 13 0 1027 

Sampling Learning Perf.-influence model 

Random/whole 
population 

= 
Predicting 
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2. Experiment: Performance Prediction 
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RQ: Which combination of sampling approaches achieve 
the highest prediction accuracy? 

System Domain # Binary Opt. # Numeric Opt. # Constraints # Configs 

Dune MGS Multi-Grid Solver 8 3 20 2 304 

HIPAcc Image Processing 31 2 416 13 485 

HSMGP Multi-Grid Solver 11 3 45 3 456 

JavaGC Runtime Env. 12 23 4 1031 

SaC Compiler 53 7 10 1023 

x264 Video Encoder 8 13 0 1027 

Sampling Learning Perf.-influence model 

Random/whole 
population 

= 
Predicting 

Average prediction accuracy (PW+PBD): 86.8 % ! 
Experimental designs are better than random  
sampling 
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3. Experiment: Accuracy vs. Complexity 

 

• RQ: Is it necessary to learn accurate but complex models? 
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Learning whole 
population 

Domain Experts 

It depends on the use case. Simple models help to 
identify the most relevant influences. 

Collaboration with: 

Sergiy  

Kolesnikov 
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4. Experiment: Validation of Domain 
Knowledge 

 

 

• RQ: Are we able to validate domain knowledge using a 
model? 
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Sampling Learning 

Domain Expert 
Perf.-influence model = 

Theoretical Knowledge 

Validate domain knowledge 

Collaboration with: 

Carmen 

Rodrigo 
Francisco  

Gaspar 
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Findings and Future Work 
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https://github.com/nsiegmun/SPLConqueror 
http://fosd.de/SPLConqueror/ 

Thank You! 


