
A tale of theories and data-structures

Jacques Carette, Musa Al-hassy, Wolfram Kahl

McMaster University, Hamilton

June 4, 2018

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 1 / 15

Lists and Monoids

Claim
A List is a Free Monoid

What does that really mean?

Fancy explanation: The functor from the category Types of types and
function, with List as its object mapping and map for homomorphism, to the
category Monoid of monoids and monoid homomorphisms, is left adjoint to the
forgetful functor (from Monoid to Types).

List (equipped with constructors [], :: and functions map, ++, singleton,
and foldr) is the language of monoids. In other words, List is the canonical
term syntax for computing with monoids.

Why on earth would we care about that? Let’s see!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 2 / 15

Lists and Monoids

Claim
A List is a Free Monoid

What does that really mean?

Fancy explanation: The functor from the category Types of types and
function, with List as its object mapping and map for homomorphism, to the
category Monoid of monoids and monoid homomorphisms, is left adjoint to the
forgetful functor (from Monoid to Types).

List (equipped with constructors [], :: and functions map, ++, singleton,
and foldr) is the language of monoids. In other words, List is the canonical
term syntax for computing with monoids.

Why on earth would we care about that? Let’s see!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 2 / 15

Lists and Monoids

Claim
A List is a Free Monoid

What does that really mean?

Fancy explanation: The functor from the category Types of types and
function, with List as its object mapping and map for homomorphism, to the
category Monoid of monoids and monoid homomorphisms, is left adjoint to the
forgetful functor (from Monoid to Types).

List (equipped with constructors [], :: and functions map, ++, singleton,
and foldr) is the language of monoids. In other words, List is the canonical
term syntax for computing with monoids.

Why on earth would we care about that? Let’s see!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 2 / 15

Lists and Monoids

Claim
A List is a Free Monoid

What does that really mean?

Fancy explanation: The functor from the category Types of types and
function, with List as its object mapping and map for homomorphism, to the
category Monoid of monoids and monoid homomorphisms, is left adjoint to the
forgetful functor (from Monoid to Types).

List (equipped with constructors [], :: and functions map, ++, singleton,
and foldr) is the language of monoids. In other words, List is the canonical
term syntax for computing with monoids.

Why on earth would we care about that? Let’s see!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 2 / 15

Non-categorical version

The requirements roughly translate to
Monoid:

Need a container C of α

with a distinguished container e devoid of α’s

a binary operation ∗ that puts two containers together

such that e is a left/right unit for ∗.
Functor:

A way to apply a (α→ β) function to a C α to get a C β

which “plays well” with id, ◦,≡ and ∗.
Adjunction:

An operation singleton embedding an α as a container C α

an operation foldr (over arbitrary Monoid)

such that both operations “play well” with each other.

Extremely handy:

Induction principle

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 3 / 15

The plot thickens

Given an arbitrary type A :

Theory Free Structure CoFree
Carrier Identity A Identity A
Pointed Maybe A –
Unary Eventually A, N×A ?
Involutive A]A A × A
Magma Tree A ?
Semigroup NEList A ?
Monoid List A ?
Left Unital Semigroup List A× N ?
Right Unital Semigroup N× List A ?

What is the Free Structure? It is “the” term language in normal form
associated to the theory.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 4 / 15

The plot thickens

Given an arbitrary type A :

Theory Free Structure CoFree
Carrier Identity A Identity A
Pointed Maybe A –
Unary Eventually A, N×A ?
Involutive A]A A × A
Magma Tree A ?
Semigroup NEList A ?
Monoid List A ?
Left Unital Semigroup List A× N ?
Right Unital Semigroup N× List A ?

What is the Free Structure? It is “the” term language in normal form
associated to the theory.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 4 / 15

Benefits

Benefits of the formal approach:

Obvious: Dispell silly conjectures/errors

Discover some neat relationships between algebraic theories and
data-structures

fold (aka the counit)

Induction

Examples: counit for Unary, Involutive

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 5 / 15

Benefits

Benefits of the formal approach:

Obvious: Dispell silly conjectures/errors

Discover some neat relationships between algebraic theories and
data-structures

fold (aka the counit)

Induction

Examples: counit for Unary, Involutive

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 5 / 15

Extending the tale

Given an arbitrary type A :

Theory Free Structure
Carrier Identity A
Pointed Maybe A
Unary N×A
Involutive A]A
Magma Tree A
Semigroup NEList A
Monoid List A
Left Unital Semigroup List A× N
Right Unital Semigroup N× List A
Commutative Monoid ?
Group ?
Abelian Group ?
Idempotent Comm. Monoid ?

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 6 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type

I Ordered!

A→ N

I No finite support!

A→ N plus finite support

I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type

I Ordered!

A→ N

I No finite support!

A→ N plus finite support

I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N

I No finite support!

A→ N plus finite support

I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N

I No finite support!

A→ N plus finite support

I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support

I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support

I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support
I “Finite support” is hard to say constructively . . .

I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support
I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .

I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support
I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support
I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)

I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support
I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)
I almost works!

I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support
I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)
I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Commutative Monoid and Bag

Definition

A Bag (over a type A) is an unordered finite collection of x where x : A.

Implementation?

Inductive type
I Ordered!

A→ N
I No finite support!

A→ N plus finite support
I “Finite support” is hard to say constructively . . .
I Summing over all elements of A is even harder . . .
I Can build a decidable equiv. relation on A from A→ N!

List A up to bag-equality (aka permutations)
I almost works!
I Commutative Monoid uses ≡

Theorem (Within Martin-Löf Type Theory)

There’s no free functor from Types to Commutative Monoids using ≡.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 7 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:

Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡

Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.

Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:

Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡

Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.

Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:

Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡

Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.

Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved

Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.

Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡

Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.

Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.
Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.

Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.
Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.
Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.
Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.

Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.
Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.
Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.
Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.
Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Change the question!

Definition
A DBag over a type A with dec. = is an unordered collection of x where
x : A.

Definition
A Bag over a setoid A is an unordered collection of x where x : CarrierA.

Implementation attempts:
Nils Anders Danielsson’s Bag Equivalence via a Proof-Relevant
Membership Relation

I Too many parts over ≡
Erik Palmgren’s Setoid Families

I Extremely complex, forget the actual dead end.
Mimick above with our own Proof-Relevant ∈ over Setoid

I Proof that fold well-behaved very hard.
Bag-equality in new version of Agda!

I Still assumes ≡.

Experimental library with permutations over tables
⇒ proof that fold is well-behaved Success!

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 8 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is

I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is

I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is

I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.

I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |

I A proof that permuting the elements of T gives a pointwise
Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Key ingredients of Bag

Distilling the insights from ∼1000 lines of Agda

Internalize length of “list” into a record Seq —subst is evil!

Table of A is FinN→ A (finite support)

Equivalence of sequences S and T is
I A permutation between |S| and |T |, i.e.
I An equivalence between Fin |S| and Fin |T |
I A proof that permuting the elements of T gives a pointwise

Setoid-equivalence to those of S.

Use previous infrastructure built to move between proofs on permutations
and proofs on types (work on Π languages w/ Amr Sabry)

Create an abstract interface for Multiset, MultisetHom and “functorial”
MultisetHom

Satisfies interface ⇒ left adjoint to Commutative Monoid

Bag satisfies the interface

Use abstract in key places to prevent normalization in proof goals

Never use subst —even when building the identity permutation

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 9 / 15

Extending the tale, take 2

Given an arbitrary type A :

Theory Structure Over Equality
Carrier Identity A Type ≡
Pointed Maybe A Type ≡
Unary N × A Type ≡
Involutive A] A Type ≡
Magma Tree A Type ≡
Semigroup NEList A Type ≡
Monoid List A Type ≡
Left Unital Semigroup List A × N Type ≡
Right Unital Semigroup N × List A Type ≡
Commutative Monoid Bag Setoid proof-relevant permutations
Group ? ? ?
Abelian Group Hybrid Sets Setoid proof-relevant permutations
Idemp. Comm. Monoid Set Setoid logical equivalence

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 10 / 15

What’s the deal with those axioms?

Works easily:
I Associativity: ∀x, y, z. x ∗ (y ∗ z) ≡ (x ∗ y) ∗ z;
I Left-unit: ∀x. e ∗ x ≡ x;
I Right-unit: ∀x. x ∗ e ≡ x
I Involutive: ∀x. inv(invx) ≡ x

Hard:
I Commutativity: ∀x, y. x ∗ y ≡ y ∗ x

Very Hard:
I Idempotence: ∀x. x ∗ x ≡ x

Found the secret ingredient in Algebraic Theories in Monoidal Categories by
L. Mauri: structural context rules (weakening, exchange, contraction).

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 11 / 15

What’s the deal with those axioms?

Works easily:
I Associativity: ∀x, y, z. x ∗ (y ∗ z) ≡ (x ∗ y) ∗ z;
I Left-unit: ∀x. e ∗ x ≡ x;
I Right-unit: ∀x. x ∗ e ≡ x
I Involutive: ∀x. inv(invx) ≡ x

Hard:
I Commutativity: ∀x, y. x ∗ y ≡ y ∗ x

Very Hard:
I Idempotence: ∀x. x ∗ x ≡ x

Found the secret ingredient in Algebraic Theories in Monoidal Categories by
L. Mauri: structural context rules (weakening, exchange, contraction).

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 11 / 15

More tale to tell

⊥, >, B, N, Z show up as initial objects.

Bivariate (but × and] are adjoint to diagonal, not forgetful functor)

Indexed sets of operations

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 12 / 15

Potential data-structures

left-zero monoid, pointed unary, idempotent unary, commutative magma,
pointed magma, quasigroup, loop, semilattice, medial magma, left semimedial
magma, left distributive magma, idempotent magma, zeropotent magma, left
unary magma, Steiner magma, null semigroup, BCI algebra, BCK algebra,
squag, sloop, Moufang quasigroup, loop, left shelf, shelf, rack, spindle,
quandle, Kei, involutive semigroup, band, rectangular band, hemigroup,
pseudo inverse algebra, ringoid, left near semiring, near semiring, semifield,
semiring, semirng, pre-dioid, dioid, star semiring, idempotent dioid, ring,
commutative ring, idempotent semiring, Stone algebra, Kleene lattice, Kleene
algebra, Heyting algebra, Goedel algebra, ortho lattice, directoid, semiheap,
idempotent semiheap, heap, meadow, wheel.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 13 / 15

Structures looking for a home

Difference list, stack, queue, finite map, rose tree, digraph, multigraph,
partitions, oriented cycles, colorings, tri-colorings, hedges, derangements,
ballots, commutative parenthesizations, linear order, permutations, even
permutations, chains, oriented sets, even sets, octopus, vertebrae.

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 14 / 15

Math and CS

Given an arbitrary type A :

Theory Structure Over Equality
Carrier Identity A Type ≡
Pointed Maybe A Type ≡
Unary N × A Type ≡
Involutive A] A Type ≡
Magma Tree A Type ≡
Semigroup NEList A Type ≡
Monoid List A Type ≡
Left Unital Semigroup List A × N Type ≡
Right Unital Semigroup N × List A Type ≡
Commutative Monoid Bag Setoid proof-relevant permutations
Group ? ? ?
Abelian Group Hybrid Sets Setoid proof-relevant permutations
Idemp. Comm. Monoid Set Setoid logical equivalence

https://github.com/JacquesCarette/TheoriesAndDataStructures

Carette, Al-hassy, Kahl (McMaster) A tale of theories and data-structures June 4, 2018 15 / 15

https://github.com/JacquesCarette/TheoriesAndDataStructures

