CompCert guarantees for low-level C programs
Sandrine Blazy HREN ’E\S“r (Q) g I R I S A 6 R —

joint work with Frédéric Besson and Pierre Wilke

IFIP W.G. 2.11, Bloomington, 2016-08-23

The CompCert C verified compiler

Compiler + proof that the compiler does not introduce bugs

CompCert, a moderately optimising C compiler usable for critical embedded
software

* Fly-by-wire software, Airbus A380 and A400M, FCGU (3600 files):
mostly control-command code generated from Scade block diagrams + mini. OS

Using the Coq proof assistant, we prove the following semantic preservation
property:

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,

if S does not exhibit undefined behaviours,

then C behaves like S.
0 — e E——————

The CompCert C reference interpreter

.C | reference intw | outcome \

\

[Compcert C]

- normal termination or aborting on an undefined behaviour

Outcome:

 observable effects (/O events)

Faithful to the formal semantics of the CompCert C language; the
interpreter displays all the behaviours according to the formal semantics.

Using the
AN examp

int main()
{ 1int x[2]

reference interpreter

e

= { 12, 34 };

printf("x[2] = %d\n", x[2]);

return O0;

}

reference interpreter

Stuck state: in function main, expression
<printf>(<ptr stringlit 1>, <loc x+8>)

Stuck subexpression: <loc x+8>

ERROR: Undefined behaviour

Undefined behaviours

ISO C standard
- signed integer overflow: M*~ defined in
» seguence point violations: .. CompCert

access to uninitialised data: int x; x=x+1;
our work

pitwise pointer arithmetic: int *p = &x; p
out-of-bounds access: int a[4]; "

dereference of a NULL pointer: int still undefined -,

In those cases, a compiler is allowed to produce any code.

_ow-level C code
_INuUX red-black trees /include/linux/rbtree.h

struct rb node {
uintptr t rb parent color;

struct rb node *rb right;

struct rb node *rb left; }s
#tdefine rb color(r) (((r)-> rb parent color) & 1)
#tdefine rb parent(r) ((struct rb node *) ((r)-> rb parent color & -~3))

B ———

Example: r.ro_parent_color = 000110 1110 1110 1001

* rb_color(r) > 1 The 2 least significant bits

are necessarily zeros.
* rb_parent(r) ~ 0b0110 1110 1110 1000

_ow-level C code (cont’d)
-ree BSD libc implementation lio/ibe/stdiib/rand.c

Random number generator (generation of a random seed)

struct timeval tv;
unsigned long junk; // left uninitialised on purpose

gettimeofday(&tv, NULL);

A A

srand((getpid() « 16) "~ tv.tv sec tv.tv_usec junk) ;

B B

The C standard imposes no requirement about the compiled program.

Anecdote: clang eliminates all computations based on junk, resulting in a
constant seed.

Objective of this work
CompCertS

Compile low-level programs faithfully to the programmer’s intentions

Pointers are mere 32-bit integers

* They can be treated as such (e.g. bitwise operations).
* They have alignment constraints (e.g. pointers to int are 4-byte aligned).

Access to uninitialised data results in an arbitrary value

- We can operate on such a value.
* It is not a trap representation.

Similar to « friendly C » proposed by J.Regher et al.

Outline

 Defining a semantics for low-level C programs

* A new memory model for
CompCert

« Experimental evaluation

=

* Proving the CompCertS compiler

An example of low-level C program 1s-vyte atigned

p = 0x681d83a0
int main() {

int * p = (int *) malloc (sizeof (int));
‘p = 42; q = 0x681d83a5
int * g = p | (hash(p) & O0xF) ;
int * r = (g>>4) <<4;

return *r;

} r = 0x681d83a0 == p

SECOND EDITION

C’& ISO C standard «Real life»
PROGRAMMING Undefined behaviour '
DORANMME Terdmlntates -
BRI WKERNGHAN Error: the first argument of ana returns
'|" is not an integer type.

The CompCert memory model

* The memory state is seen as a collection of separate blocks, where
each block is an array of bytes.

* Values
vival ::= int(j) | ptr(b,0) | undef (| long(l) | single(s) | float(f))

of D5
ptr(be, 2) int(0)
0 \ int(5)
int(5) int(7)
int(128)

- Memory operations (alloc, free, load, store)

* The integrity of stored values is preserved (good variable properties).

Back to the example

int main() {

int * p = (int *) malloc (sizeof (int));
*p = 42;
int * g= p | 5 ;

int * r = (g> 4) << 4 ;

return *r;

> int(42)

12

A new memory model for CompCert

« Symbolic values

sv.sval ::=v
indet (b,i) labelled uninitialised value
op1 sv
sv1l op2 sv2 indet (b,0)
indet (b, 1)
+ Example: int x: return (x-x); | indet (b,2)
indet (b, 3)

- Memory operations
loadkmbi= [sv]

storekxmbisv= | m’ |

BSack to the example

int main() {
int * p = (int *) malloc (sizeof (int));
*p = 42;

int * g= p | 5 ;
int * r = (g> 4) << 4 ;
return *r;

}

R —

alignment constraint
k)p k)
ptr(o,0) Y int(42)
of

ptr(bi@)dent(5)

symbolic values

o
r (ptr(b, 0)[5)) >>4)<<4 otr(b, O)

14

Updating the CompCert semantics

Introduce normalisation when needed

Normalisation function to transform symbolic values into values
normalise: memory — sval — val

- Memory access

—a, M = sva normalise (M,sva) = ptr (b,0) load (M, b, 0) = [sv]

—*a, M « sv

—a, M = sva normalise (M,svz) = ptr (b,0) store (M, b, 0, sv) = | M’ |

— *a=sv, M — skip, M’

« Control flow

—a, M = sva normalise (M, sva) =int () is_true (i)
— if athen s1 else s2, M — s1,M

15

Normalisation: intuition

Concrete memory cm : block — int

memory m 6 concrete memories of m

Isati of sv
o
v and sv evaluate the

ame 1IN an valid

CMme

10 I1 §) I32 148 I64 I8O 196

| | >
Addresses in concrete memories

16

Sound normalisation
Validity of concrete memories

CMmA

CMmeo

Cmas

Chmay

CMmes
CMmeg

0 16 32 48 64 80 96
| | |

|
A concrete memory cm is valid for a memory m (cm ~ m) iff
- valid locations lie strictly between 0 and 232-1,

- valid locations from distinct blocks do not overlap,
* blocks are mapped to suitably aligned addresses.

Theorem uniqueness_of _sound_normalisation :
for any memory m and symbolic value sy,
there is at most one sound normalisation.

In particular, int(i) and ptr(b,0) cannot be sound normalisations of a same sv.
17

Properties of the memory model
Good-variable properties

Theorem load store same old:
vimbovm,storekmbov= |m] 2 loadecmbo= [v].

. store kintm b 0 int()) = L m’ |

. load_store_same kint M’ b 0 int(i) = Lsv_] with sv = ((i >> (8+3))&0xFF) << (8+3)

+ ...
+ ((i >> (8 = 0))&0XFF) << (8 = 0)
 sv # int(i), but sv = int(i)

Theorem load store same:
Vvikmbovm’, storekmbov= |[m]| —

Jsv,loadkm’bo= [sv] Asvxv

18

=Xperimental evaluation

- We implemented the normalisation with a SMT solver.

- Executable semantics of C, tested on CompCert benchmark examples, hand-
written examples, libraries dlmalloc and pdclib.

- Test of the executable semantics
Cross-validation: check that we preserved the CompCert’s defined behaviours.

"~~)
~)

ol ————— o2

CompCert CompCertS

v
Ol'=======-- o2’

19

Comparison to NULL pointers

In CompCert 2.4, pointer values ptr(b,0) always compare unequal to NULL.

That snippet of code never terminates according to CompCert 2.4.

int main() {

int x, *p;

for (p = &x; p != 0; p++) /*skip*/;
return 0;

}

T — .

However, when run on a physical machine, it terminates when the
representation of p wraps around and becomes 0.

Fixed in CompCert 2.5+: ptr(b,0) # 0only defined when (valid m b o).

20

Proof of the compiler passes

The architecture of the proofs from CompCert has been mostly preserved.

Main difficulty: generalizing memory injections, and relating normalisation and
memory injections (required to define injections on concrete memories).

blocals

Do |2 undef

Other passes are reproved by generalising the invariants, e.g. using
equivalence instead of equality.

21

Conclusion

A new memory model for arbitrary pointer arithmetic and uninitialised data

* symbolic values
®* normalisation (implemented using a SMT solver)
® executable semantics

Finite memory — compilation in decreasing memory

Adapted (most of) the proofs of CompCert

® memory injections generalised
* formal guarantees for more programs

22

Perspectives

Handle freed blocks better (their size is 0, they can therefore overlap)

Apply our model to security

» Obfuscation, e.qg. variable splitting: split x into x1 = x/2 and x2 = x%?2

- Software Fault Isolation (Appel & al., Portable SFI, CSF 2014)

- Mask pointers using bitwise operations
 Currently modelled as an external call

23

Questions ?

24

