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The CompCert C verified compiler

 Compiler + proof that the compiler does not introduce bugs 


CompCert, a moderately optimising C compiler usable for critical embedded 
software 

• Fly-by-wire software, Airbus A380 and A400M, FCGU (3600 files):  

mostly control-command code generated from Scade block diagrams + mini. OS


Using the Coq proof assistant, we prove the following semantic preservation 
property:


 

 

 

For all source programs S and compiler-generated code C, 
if the compiler generates machine code C from source S, 
without reporting a compilation error,  
if S does not exhibit undefined behaviours,  
then C behaves like S.
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The CompCert C reference interpreter

Outcome:

• normal termination or aborting on an undefined behaviour

• observable effects (I/O events)


Faithful to the formal semantics of the CompCert C language; the 
interpreter displays all the behaviours according to the formal semantics.

reference interpreter.c outcome

Compcert C
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Using the reference interpreter 
An example

int main()
{  int x[2] = { 12, 34 };
  printf("x[2] = %d\n", x[2]);
  return 0;  }

Stuck state: in function main, expression
  <printf>(<ptr __stringlit_1>, <loc x+8>)
Stuck subexpression: <loc x+8>
ERROR: Undefined behaviour

reference interpreter

4



Undefined behaviours 

ISO C standard

• signed integer overflow: MAX_INT +1

• sequence point violations: (x=3) + (x=4)

• access to uninitialised data: int x; x=x+1;

• bitwise pointer arithmetic: int *p = &x; p = p | 0X1;

• out-of-bounds access: int a[4]; a[4];

• dereference of a NULL pointer: int *p = NULL; *p;


In those cases, a compiler is allowed to produce any code.
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defined in 
CompCert

our work

still undefined



Low-level C code 
Linux red-black trees /include/linux/rbtree.h

Example: r.rb_parent_color = 0b0110 1110 1110 1001 

• rb_color(r) ↝ 1 


• rb_parent(r) ↝ 0b0110 1110 1110 1000 
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struct rb_node {  
    uintptr_t rb_parent_color; 
    struct rb_node *rb_right; 
    struct rb_node *rb_left;   }; 

#define rb_color(r) (((r)-> rb_parent_color) & 1)
#define rb_parent(r) ((struct rb_node *) ((r)-> rb_parent_color & ~3))

The 2 least significant bits 
are necessarily zeros.



Low-level C code (cont’d) 
Free BSD libc implementation lib/libc/stdlib/rand.c

Random number generator (generation of a random seed)


The C standard imposes no requirement about the compiled program.


Anecdote: clang eliminates all computations based on junk, resulting in a 
constant seed. 
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struct timeval tv;  
unsigned long junk; // left uninitialised on purpose 
gettimeofday(&tv, NULL);  
srand((getpid() « 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk); 



Objective of this work 
CompCertS

Compile low-level programs faithfully to the programmer’s intentions


Pointers are mere 32-bit integers

• They can be treated as such (e.g. bitwise operations).

• They have alignment constraints (e.g. pointers to int are 4-byte aligned).


Access to uninitialised data results in an arbitrary value

• We can operate on such a value.

• It is not a trap representation.


Similar to « friendly C » proposed by J.Regher et al.
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Outline

• Defining a semantics for low-level C programs


• A new memory model for  
CompCert


• Experimental evaluation


• Proving the CompCertS compiler
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An example of low-level C program

ISO C standard

Undefined behaviour

Error: the first argument of 
'|' is not an integer type.

int main() { 
 int * p = (int *) malloc (sizeof (int));
    
    *p = 42;
    int * q =  p | (hash(p) & 0xF) ;
    int * r = ( q >> 4 ) << 4 ;   
    return *r;
}

p = 0x681d83a0

16-byte aligned

q = 0x681d83a5

r = 0x681d83a0 == p

«Real life»

Terminates 
and returns 42
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The CompCert memory model

• The memory state is seen as a collection of separate blocks, where  
each block is an array of bytes.


• Values 
v:val ::= int(i) | ptr(b,o) | undef (| long(l) | single(s) | float(f))

• Memory operations (alloc, free, load, store) 


• The integrity of stored values is preserved (good variable properties).

ptr(b2, 2)

int(5)
int(5)
int(7)

int(0)

int(128)

b2b1

b3

11



Back to the example

int main() { 
 int * p = (int *) malloc (sizeof (int));
    
    *p = 42;
    int * q =  p | 5 ;
    int * r = ( q >> 4 ) << 4 ;   
    return *r;
}

bbp

bq

br

ptr(b, 0) int(42)

undef
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A new memory model for CompCert

• Symbolic values  
sv:sval ::= v  
            | indet (b,i)       labelled uninitialised value  
            | op1 sv  
            | sv1 op2 sv2


• Example:                     int x; return (x-x);

• Memory operations 
 load ! m b i = ⎣sv⎦ 
 store ! m b i sv = ⎣m’⎦ 
 …
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Back to the example

int main() { 
 int * p = (int *) malloc (sizeof (int));
    
    *p = 42;
    int * q =  p | 5 ;
    int * r = ( q >> 4 ) << 4 ;   
    return *r;
}

bbp

bq

br

ptr(b,0) | int(5)

((ptr(b, 0)|5)) >>4)<<4 ≈ ptr(b, 0)

alignment constraint

symbolic values

ptr(b,0) int(42)

undef
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Updating the CompCert semantics 
Introduce normalisation when needed

• Memory access


⊢ a, M → sva         normalise (M,sva) = ptr (b,o)            load (M, b, o) = ⎣sv⎦ 
⊢ *a, M ← sv


⊢ a, M → sva         normalise (M,sva) = ptr (b,o)          store (M, b, o, sv) = ⎣M’⎦ 
⊢ *a= sv, M → skip, M’


• Control flow

⊢ a, M → sva         normalise (M, sva) = int (i)             is_true (i)  

⊢ if a then s1 else s2, M → s1,M
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Normalisation function to transform symbolic values into values

normalise: memory → sval → val



Normalisation: intuition

Concrete memory cm : block → int
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memory m

Addresses in concrete memories

6 concrete memories of m

cm1

cm2

cm3

cm4

cm5

cm6

16 32 64 80 96480

bq

bp

v is a sound 
normalisation of sv 

 iff  
v and sv evaluate the 
same in any cm valid 

for m



Sound normalisation 
Validity of concrete memories

A concrete memory cm is valid for a memory m (cm ⊢ m) iff

• valid locations lie strictly between 0 and 232-1, 

• valid locations from distinct blocks do not overlap,

• blocks are mapped to suitably aligned addresses.


Theorem uniqueness_of_sound_normalisation : 
for any memory m and symbolic value sv,  
there is at most one sound normalisation.

In particular, int(i) and ptr(b,o) cannot be sound normalisations of a same sv.
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cm1

cm2

cm3

cm4

cm5

cm6

16 32 64 80 96480



Properties of the memory model 
Good-variable properties

Theorem load_store_same_old :  
∀ ! m b o v m’, store ! m b o v = ⎣m’⎦ → load ! m’ b o = ⎣v⎦.


• store !int m b 0 int(i) = ⎣m’⎦ 

• load_store_same !int m’ b 0 int(i) = ⎣sv⎦with sv = ((i >> (8∗3))&0xFF) << (8∗3)  
                                                              + …  
                                                              + ((i >> (8 ∗ 0))&0xFF) << (8 ∗ 0) 


• sv ≠ int(i), but sv ≈ int(i)


Theorem load_store_same :  
∀ ! m b o v m’, store ! m b o v = ⎣m’⎦ →  
                         ∃ sv, load ! m’ b o = ⎣sv⎦∧ sv ≈ v.

18



Experimental evaluation

• We implemented the normalisation with a SMT solver.


• Executable semantics of C, tested on CompCert benchmark examples, hand-
written examples, libraries dlmalloc and pdclib.


• Test of the executable semantics 
Cross-validation: check that we preserved the CompCert’s defined behaviours.
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σ1 ≈ σ2

σ1’ σ2’≈

CompCert CompCertS



Comparison to NULL pointers

In CompCert 2.4, pointer values ptr(b,o) always compare unequal to NULL.


That snippet of code never terminates according to CompCert 2.4.


However, when run on a physical machine, it terminates when the 
representation of p wraps around and becomes 0. 


Fixed in CompCert 2.5+: ptr(b,o) ≠ 0 only defined when (valid m b o). 
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int main() { 
 int x, *p;
 for (p = &x; p != 0; p++) /*skip*/;
   return 0; 
}



Proof of the compiler passes

The architecture of the proofs from CompCert has been mostly preserved. 


Main difficulty: generalizing memory injections, and relating normalisation and 
memory injections (required to define injections on concrete memories). 


Other passes are reproved by generalising the invariants, e.g. using 
equivalence instead of equality. 
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int(2)3
undef2

ptr(bq,0) | int(5)2

indet(bp,0)2

bp

bq

br

indet(blocals,1)
ptr(blocals,0)|int(5)

blocals

m1 m2



Conclusion

A new memory model for arbitrary pointer arithmetic and uninitialised data


• symbolic values

• normalisation (implemented using a SMT solver)

• executable semantics


Finite memory → compilation in decreasing memory


Adapted (most of) the proofs of CompCert


• memory injections generalised

• formal guarantees for more programs 
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Perspectives

Handle freed blocks better (their size is 0, they can therefore overlap)


Apply our model to security

• Obfuscation, e.g. variable splitting: split x into x1 = x/2 and x2 = x%2 

• Software Fault Isolation (Appel & al., Portable SFI, CSF 2014)

• Mask pointers using bitwise operations

• Currently modelled as an external call
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Questions ?
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