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Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

a <- normal 10 3
b <- normal 10 3
1l <- normal O 2

Observed effect

condition (a-b > 1)

Hidden cause

return (a > b) Denoted measure:

Ac. /da, /db /dl (a—b>1l)cla>0)
N(10,3) N(10,3) N(0,2)
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Sampling is hard. Let's do math!

Filtering = tracking current state with uncertainty
Conditioning = clamp first/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

) - 141 49
x’ <- normal 0 10

Hidden cause

return x’
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Math is hard. Let’'s go sampling!

Each sample has an importance weight:
How much did we rig our random choices to avoid rejection?

. 25 T T T
Generative story
X <- normal 10 3
m <- normal x 1 20 7 ]
x’ <- normal (x+5) 2
Observed effect % 15 .
condition (m = 9)
Hidden cause 10 [ .
return x’ o
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The story so far

1. Declarative program specifies generative story
and observed effect.

2. We try mathematical optimizations,
but still need to sample.

3. Asampler should generate a stream of samples
(run-weight pairs) whose histogram matches the
specified conditional distribution.

4. Importance sampling generates each sample
independently.



Monte Carlo Markov Chain

For harder search problems,
keep the previous sampling run in memory, and
take a random walk that lingers around high-probability runs.
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Monte Carlo Markov Chain

For harder search problems,
keep the previous sampling run in memory, and
take a random walk that lingers around high-probability runs.

RotorLength

ingType=Helicoj

1. Initialise 2(®.
2. Fori=0to N -1

WingType

- Sample U~ M[O,II'

—  Sample z* ~ g(z*|z(¥).

. R p{z*)gq 2 z*)
- Fu<A,2) = m‘n{l’ #=)g(a" T )}

z.(i+l) = g*

else
ZEH) = (D)

Want: 1. match dimensions 2. reject less 3. infinite domain



A lazy probabilistic language

data Code = Evaluate [Loc] ([Value| -> Code)
| Allocate Code (Loc -> Code)
| Generate [(Value, Prob)

type Prob = Double

type Subloc = Int
type Loc = [Subloc

data Value = Bool Bool |



A lazy probabilistic language

data Code = Evaluate [Loc] ([Value] -> Code)

| Allocate Code (Loc -> Code)

| Generate [(Value, Prob)]
bernoulli :: Prob -> Code
bernoulli p = Generate [(Bool True , p ),

(Bool False, 1-p)]
RotorLength

example :: Code ‘

example = Allocate (bernoulli 0.5) $ \w —>
Allocate (bernoulli 0.5) $ \r —>
Evaluate [w] $ \[Bool w] —>
if w then Evaluate [r] $ \[Bool r] ->
if r then bernoulli 0.4
else bernoulli 0.8
else bernoulli 0.2

ingType=Helicopt



Through the lens of lazy evaluation

To , Wingate et al's MH sampler
reuses random choices in the heap from the previous run.
(memoization)

To , Arora et al.s Gibbs sampler
evaluates code in the context of its desired output.
(destination passing)
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Summary

Probabilistic programming
» Denote measure by generative story
» Run backwards to infer cause from effect

Mathematical reasoning
» Define conditioning
» Reduce sampling
» Avoid rejection

Lazy evaluation
» Match dimensions (reversible jump)
» Reject less (Gibbs sampling)
» Infinite domain?
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