
This work is supported by DARPA grant FA8750-14-2-0007. 1

From lazy evaluation to Gibbs sampling

Chung-chieh Shan
Indiana University

March 19, 2014

Come to Indiana University to create essential abstractions
and practical languages for clear, robust and e�cient programs.

Dan Friedman
relational & logic languages,
meta-circularity & re�ection

Ryan Newton
streaming, distributed & GPU DSLs,
Haskell deterministic parallelism

Amr Sabry
quantum computing, type
theory, information e�ects

Chung-chieh Shan
probabilistic programming,
semantics

Jeremy Siek
gradual typing,
mechanized metatheory,
high performance

Sam Tobin-Hochstadt
types for untyped languages,
contracts,
languages for the Web

Check out our work: Boost Libraries · Build to Order BLAS · C++ Concepts ·
Chapel Generics · HANSEI · JavaScript Modules · Racket & Typed Racket ·
miniKanren · LVars ·monad-par ·meta-par ·WaveScript

http://lambda.soic.indiana.edu/

4

Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

a <- normal 10 3

b <- normal 10 3

l <- normal 0 2

Observed e�ect

condition (a-b > l)

Hidden cause

return (a > b)

4

Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

0 5 10 15 20 25
0

50

100

150

200

250

300

a

a <- normal 10 3

b <- normal 10 3

l <- normal 0 2

Observed e�ect

condition (a-b > l)

Hidden cause

return (a > b)

4

Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

0 5 10 15 20
0

5

10

15

20

a

b

a <- normal 10 3

b <- normal 10 3

l <- normal 0 2

Observed e�ect

condition (a-b > l)

Hidden cause

return (a > b)

4

Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

0

5

a
10

15

20

0

5

b
10

15

20

-4

-2

no
is

e

0

2

4

a <- normal 10 3

b <- normal 10 3

l <- normal 0 2

Observed e�ect

condition (a-b > l)

Hidden cause

return (a > b)

4

Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

0

5

a
10

15

20

0

5

b
10

15

20

-4

-2

no
is

e

0

2

4

a <- normal 10 3

b <- normal 10 3

l <- normal 0 2

Observed e�ect

condition (a-b > l)

Hidden cause

return (a > b)

4

Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

0

5

a
10

15

20

0

5

b
10

15

20

-4

-2

no
is

e

0

2

4

a <- normal 10 3

b <- normal 10 3

l <- normal 0 2

Observed e�ect

condition (a-b > l)

Hidden cause

return (a > b)

4

Probabilistic programming

Alice beat Bob at a game. Is she better than him at it?

Generative story

Denoted measure:

�c:

Z

N(10;3)

da

Z

N(10;3)

db

Z

N(0;2)

dl ha� b > li c(a > b)

a <- normal 10 3

b <- normal 10 3

l <- normal 0 2

Observed e�ect

condition (a-b > l)

Hidden cause

return (a > b)

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty

Conditioning = clamp �rst/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

x <- normal 10 3

m <- normal 10
p
10

let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1

x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty

Conditioning = clamp �rst/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

0 5 10 15 20
0

10

20

30

40

50

60

70

x

x <- normal 10 3

m <- normal 10
p
10

let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1

x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty

Conditioning = clamp �rst/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

0 5 10 15 20
0

5

10

15

20

x

m

x <- normal 10 3

m <- normal 10
p
10

let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1

x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty

Conditioning = clamp �rst/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

m
x

20
15

10
5

5

10

x’15

20

25

0 0
5

10
15

20

x <- normal 10 3

m <- normal 10
p
10

let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1

x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty

Conditioning = clamp �rst/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

m
x

20
15

10
5

5

10

x’15

20

25

0 0
5

10
15

20

x <- normal 10 3

m <- normal 10
p
10

let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1

x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty
Conditioning = clamp �rst/outermost choice/integral

Conjugacy = absorb one choice/integral into another

Generative story

x <- normal 10 3 m <- normal 10
p
10

let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1 x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty
Conditioning = clamp �rst/outermost choice/integral

Conjugacy = absorb one choice/integral into another

Generative story

x <- normal 10 3 m <- normal 10
p
10 let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1 x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty
Conditioning = clamp �rst/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

x <- normal 10 3 m <- normal 10
p
10 let m = 9

x <- normal 91
10

q
9
10

m <- normal x 1 x <- normal (9
10m+

1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

5

Sampling is hard. Let’s do math!

Filtering = tracking current state with uncertainty
Conditioning = clamp �rst/outermost choice/integral
Conjugacy = absorb one choice/integral into another

Generative story

x <- normal 10 3 m <- normal 10
p
10 let m = 9

x <- normal 91
10

q
9
10m <- normal x 1 x <- normal (9

10m+
1
1010)

q
9
10

x’ <- normal 141
10

q
49
10

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

6

Math is hard. Let’s go sampling!

Each sample has an importance weight

:
How much did we rig our random choices to avoid rejection?

Generative story

x <- normal 10 3

m <- normal x 1

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

6

Math is hard. Let’s go sampling!

Each sample has an importance weight

:
How much did we rig our random choices to avoid rejection?

Generative story

0 5 10 15 20
5

10

15

20

25

x

x’

x <- normal 10 3

m <- normal x 1

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

6

Math is hard. Let’s go sampling!

Each sample has an importance weight:
How much did we rig our random choices to avoid rejection?

Generative story

0 5 10 15 20
5

10

15

20

25

x

x’

x <- normal 10 3

m <- normal x 1

x’ <- normal (x+5) 2

Observed e�ect

condition (m = 9)

Hidden cause

return x’

7

The story so far

1. Declarative program speci�es generative story
and observed e�ect.

2. We try mathematical optimizations,
but still need to sample.

3. A sampler should generate a stream of samples
(run-weight pairs) whose histogram matches the
speci�ed conditional distribution.

4. Importance sampling generates each sample
independently.

8

Monte Carlo Markov Chain

For harder search problems,
keep the previous sampling run in memory, and
take a random walk that lingers around high-probability runs.

WingType=Helicopter

WingType

RotorLength

BladeFlash

Figure 1: The CBN of Example 1, in which the Blade-
Flash sensor model differs for helicopters and planes.

cate on some subset of V. Each leaf of TX encodes a
probability distribution parameterized by a subset of
V, and defined on dom(X).

Example 1. An aircraft of unknown WingType – He-
licopter or FixedWingPlane – is detected on a radar.
Helicopters have an unknown RotorLength, and de-
pending on this length they might produce a character-
istic pattern called a BladeFlash (Tait, 2009) in the
returned radar signal. A FixedWingPlane might also
produce a BladeFlash. As summarized in Figure 1,

TWingType = F1

TRotorLength =

{
F2 if WingType = Helicopter
null otherwise

TBladeFlash =

{
F3(RL) if WingType = Helicopter
F4 otherwise

where RL is an abbreviation for RotorLength.

An instantiation σ is an assignment of values to a sub-
set of V. We write vars(σ) for the set of variables to
which σ assigns values, and σX for the value that σ
assigns to a variable X. σX=a is a modified instanti-
ation which agrees with σ except for setting X to a.
An instantiation σ is said to be finite if vars(σ) is fi-
nite. An instantiation σ supports X if all the variables
needed to evaluate TX are present in σ. In Exam-
ple 1, [WingType=FixedWing] supports BladeFlash,
but [WingType=Helicopter] does not.

We write σTX for the minimal subset of σ needed to
evaluate TX , and pX(· | σTX) for the resulting distri-
bution of X. The parents of X in σ are vars(σTX),
while the children of X in σ are

Λ(σ,X) = {Y | Y ∈ vars(σ), X ∈ vars(σTY)}. (1)

The subset of vars(σTX) which were used to evaluate
internal nodes of TX (rather than the leaf) are the

switching parents of X in σ. Intuitively, changes in
the values of switching parents can switch the distri-
bution of X, as well as its set of parents. A switching
variable in σ is a switching parent for one or more
variables in σ. For the CBN of Example 1, the in-
stantiation [WingType=Helicopter, RotorLength=6,
BladeFlash=true] makes WingType a switching par-
ent of both RotorLength and BladeFlash.

An instantiation σ is self-supporting if it supports all
variables in σ. Assuming that the CBN is well-defined
(Milch et al., 2005b), we can define the probability of
a self-supporting instantiation as follows:

p(σ) =
∏

X ∈ vars(σ)

pX(σX | σTX) (2)

An instantiation σ is feasible if p(σ) > 0.

3 Related Work

Milch and Russell (2006) have previously shown
that the state space for Markov chain Monte Carlo
(MCMC) inference in CBNs may consist of mini-
mal partial instantiations that support the evidence,
E, and query variables, Q. This idea has been ex-
ploited to build the current, default inference engine
for BLOG. Standard sampling algorithms for nonpara-
metric, Dirichlet process mixture models use a related
representation: they instantiate parameters for those
mixture components which support the evidence, as
well as a few auxiliary components (Neal, 2000). Our
new algorithm builds on both of these methods.

3.1 Parent-Conditional Sampling

In the absence of a model-specific, user supplied
proposal distribution, BLOG’s existing inference en-
gine relies on a parent-conditional proposal. This
algorithm picks a variable, X, at random from all
non-evidence variables in the current instantiation σ,
V (σ) = vars(σ)−E, and proposes a new instantiation
σ′ with the value of X drawn from pX(· | σTX). If X
was a switching variable in σ, we may then need to in-
stantiate new variables, and uninstantiate unneeded
ones, to make σ′ minimal and self-supporting over
Q ∪ E. All new variables are instantiated with val-
ues drawn from their parent-conditional distribution.

We say that any σ′ constructed by this procedure is

reachable from σ via X, or σ
X σ′. The following

properties are easily seen to be true of reachability.

Proposition 1. A minimal self-supporting feasible in-
stantiation σ′ is reachable from an instantiation σ via
X if and only if X ∈ vars(σ) ∩ vars(σ′), and σ and σ′

agree on all other variables in vars(σ) ∩ vars(σ′).

Want: 1. match dimensions 2. reject less 3. in�nite domain

8

Monte Carlo Markov Chain

For harder search problems,
keep the previous sampling run in memory, and
take a random walk that lingers around high-probability runs.

WingType=Helicopter

WingType

RotorLength

BladeFlash

Figure 1: The CBN of Example 1, in which the Blade-
Flash sensor model differs for helicopters and planes.

cate on some subset of V. Each leaf of TX encodes a
probability distribution parameterized by a subset of
V, and defined on dom(X).

Example 1. An aircraft of unknown WingType – He-
licopter or FixedWingPlane – is detected on a radar.
Helicopters have an unknown RotorLength, and de-
pending on this length they might produce a character-
istic pattern called a BladeFlash (Tait, 2009) in the
returned radar signal. A FixedWingPlane might also
produce a BladeFlash. As summarized in Figure 1,

TWingType = F1

TRotorLength =

{
F2 if WingType = Helicopter
null otherwise

TBladeFlash =

{
F3(RL) if WingType = Helicopter
F4 otherwise

where RL is an abbreviation for RotorLength.

An instantiation σ is an assignment of values to a sub-
set of V. We write vars(σ) for the set of variables to
which σ assigns values, and σX for the value that σ
assigns to a variable X. σX=a is a modified instanti-
ation which agrees with σ except for setting X to a.
An instantiation σ is said to be finite if vars(σ) is fi-
nite. An instantiation σ supports X if all the variables
needed to evaluate TX are present in σ. In Exam-
ple 1, [WingType=FixedWing] supports BladeFlash,
but [WingType=Helicopter] does not.

We write σTX for the minimal subset of σ needed to
evaluate TX , and pX(· | σTX) for the resulting distri-
bution of X. The parents of X in σ are vars(σTX),
while the children of X in σ are

Λ(σ,X) = {Y | Y ∈ vars(σ), X ∈ vars(σTY)}. (1)

The subset of vars(σTX) which were used to evaluate
internal nodes of TX (rather than the leaf) are the

switching parents of X in σ. Intuitively, changes in
the values of switching parents can switch the distri-
bution of X, as well as its set of parents. A switching
variable in σ is a switching parent for one or more
variables in σ. For the CBN of Example 1, the in-
stantiation [WingType=Helicopter, RotorLength=6,
BladeFlash=true] makes WingType a switching par-
ent of both RotorLength and BladeFlash.

An instantiation σ is self-supporting if it supports all
variables in σ. Assuming that the CBN is well-defined
(Milch et al., 2005b), we can define the probability of
a self-supporting instantiation as follows:

p(σ) =
∏

X ∈ vars(σ)

pX(σX | σTX) (2)

An instantiation σ is feasible if p(σ) > 0.

3 Related Work

Milch and Russell (2006) have previously shown
that the state space for Markov chain Monte Carlo
(MCMC) inference in CBNs may consist of mini-
mal partial instantiations that support the evidence,
E, and query variables, Q. This idea has been ex-
ploited to build the current, default inference engine
for BLOG. Standard sampling algorithms for nonpara-
metric, Dirichlet process mixture models use a related
representation: they instantiate parameters for those
mixture components which support the evidence, as
well as a few auxiliary components (Neal, 2000). Our
new algorithm builds on both of these methods.

3.1 Parent-Conditional Sampling

In the absence of a model-specific, user supplied
proposal distribution, BLOG’s existing inference en-
gine relies on a parent-conditional proposal. This
algorithm picks a variable, X, at random from all
non-evidence variables in the current instantiation σ,
V (σ) = vars(σ)−E, and proposes a new instantiation
σ′ with the value of X drawn from pX(· | σTX). If X
was a switching variable in σ, we may then need to in-
stantiate new variables, and uninstantiate unneeded
ones, to make σ′ minimal and self-supporting over
Q ∪ E. All new variables are instantiated with val-
ues drawn from their parent-conditional distribution.

We say that any σ′ constructed by this procedure is

reachable from σ via X, or σ
X σ′. The following

properties are easily seen to be true of reachability.

Proposition 1. A minimal self-supporting feasible in-
stantiation σ′ is reachable from an instantiation σ via
X if and only if X ∈ vars(σ) ∩ vars(σ′), and σ and σ′

agree on all other variables in vars(σ) ∩ vars(σ′).

Want: 1. match dimensions 2. reject less 3. in�nite domain

9

A lazy probabilistic language

WingType=Helicopter

WingType

RotorLength

BladeFlash

Figure 1: The CBN of Example 1, in which the Blade-
Flash sensor model differs for helicopters and planes.

cate on some subset of V. Each leaf of TX encodes a
probability distribution parameterized by a subset of
V, and defined on dom(X).

Example 1. An aircraft of unknown WingType – He-
licopter or FixedWingPlane – is detected on a radar.
Helicopters have an unknown RotorLength, and de-
pending on this length they might produce a character-
istic pattern called a BladeFlash (Tait, 2009) in the
returned radar signal. A FixedWingPlane might also
produce a BladeFlash. As summarized in Figure 1,

TWingType = F1

TRotorLength =

{
F2 if WingType = Helicopter
null otherwise

TBladeFlash =

{
F3(RL) if WingType = Helicopter
F4 otherwise

where RL is an abbreviation for RotorLength.

An instantiation σ is an assignment of values to a sub-
set of V. We write vars(σ) for the set of variables to
which σ assigns values, and σX for the value that σ
assigns to a variable X. σX=a is a modified instanti-
ation which agrees with σ except for setting X to a.
An instantiation σ is said to be finite if vars(σ) is fi-
nite. An instantiation σ supports X if all the variables
needed to evaluate TX are present in σ. In Exam-
ple 1, [WingType=FixedWing] supports BladeFlash,
but [WingType=Helicopter] does not.

We write σTX for the minimal subset of σ needed to
evaluate TX , and pX(· | σTX) for the resulting distri-
bution of X. The parents of X in σ are vars(σTX),
while the children of X in σ are

Λ(σ,X) = {Y | Y ∈ vars(σ), X ∈ vars(σTY)}. (1)

The subset of vars(σTX) which were used to evaluate
internal nodes of TX (rather than the leaf) are the

switching parents of X in σ. Intuitively, changes in
the values of switching parents can switch the distri-
bution of X, as well as its set of parents. A switching
variable in σ is a switching parent for one or more
variables in σ. For the CBN of Example 1, the in-
stantiation [WingType=Helicopter, RotorLength=6,
BladeFlash=true] makes WingType a switching par-
ent of both RotorLength and BladeFlash.

An instantiation σ is self-supporting if it supports all
variables in σ. Assuming that the CBN is well-defined
(Milch et al., 2005b), we can define the probability of
a self-supporting instantiation as follows:

p(σ) =
∏

X ∈ vars(σ)

pX(σX | σTX) (2)

An instantiation σ is feasible if p(σ) > 0.

3 Related Work

Milch and Russell (2006) have previously shown
that the state space for Markov chain Monte Carlo
(MCMC) inference in CBNs may consist of mini-
mal partial instantiations that support the evidence,
E, and query variables, Q. This idea has been ex-
ploited to build the current, default inference engine
for BLOG. Standard sampling algorithms for nonpara-
metric, Dirichlet process mixture models use a related
representation: they instantiate parameters for those
mixture components which support the evidence, as
well as a few auxiliary components (Neal, 2000). Our
new algorithm builds on both of these methods.

3.1 Parent-Conditional Sampling

In the absence of a model-specific, user supplied
proposal distribution, BLOG’s existing inference en-
gine relies on a parent-conditional proposal. This
algorithm picks a variable, X, at random from all
non-evidence variables in the current instantiation σ,
V (σ) = vars(σ)−E, and proposes a new instantiation
σ′ with the value of X drawn from pX(· | σTX). If X
was a switching variable in σ, we may then need to in-
stantiate new variables, and uninstantiate unneeded
ones, to make σ′ minimal and self-supporting over
Q ∪ E. All new variables are instantiated with val-
ues drawn from their parent-conditional distribution.

We say that any σ′ constructed by this procedure is

reachable from σ via X, or σ
X σ′. The following

properties are easily seen to be true of reachability.

Proposition 1. A minimal self-supporting feasible in-
stantiation σ′ is reachable from an instantiation σ via
X if and only if X ∈ vars(σ) ∩ vars(σ′), and σ and σ′

agree on all other variables in vars(σ) ∩ vars(σ′).

data Code = Evaluate [Loc] ([Value] -> Code)

| Allocate Code (Loc -> Code)

| Generate [(Value, Prob)]

type Prob = Double

type Subloc = Int

type Loc = [Subloc]

data Value = Bool Bool | ...

9

A lazy probabilistic language

WingType=Helicopter

WingType

RotorLength

BladeFlash

Figure 1: The CBN of Example 1, in which the Blade-
Flash sensor model differs for helicopters and planes.

cate on some subset of V. Each leaf of TX encodes a
probability distribution parameterized by a subset of
V, and defined on dom(X).

Example 1. An aircraft of unknown WingType – He-
licopter or FixedWingPlane – is detected on a radar.
Helicopters have an unknown RotorLength, and de-
pending on this length they might produce a character-
istic pattern called a BladeFlash (Tait, 2009) in the
returned radar signal. A FixedWingPlane might also
produce a BladeFlash. As summarized in Figure 1,

TWingType = F1

TRotorLength =

{
F2 if WingType = Helicopter
null otherwise

TBladeFlash =

{
F3(RL) if WingType = Helicopter
F4 otherwise

where RL is an abbreviation for RotorLength.

An instantiation σ is an assignment of values to a sub-
set of V. We write vars(σ) for the set of variables to
which σ assigns values, and σX for the value that σ
assigns to a variable X. σX=a is a modified instanti-
ation which agrees with σ except for setting X to a.
An instantiation σ is said to be finite if vars(σ) is fi-
nite. An instantiation σ supports X if all the variables
needed to evaluate TX are present in σ. In Exam-
ple 1, [WingType=FixedWing] supports BladeFlash,
but [WingType=Helicopter] does not.

We write σTX for the minimal subset of σ needed to
evaluate TX , and pX(· | σTX) for the resulting distri-
bution of X. The parents of X in σ are vars(σTX),
while the children of X in σ are

Λ(σ,X) = {Y | Y ∈ vars(σ), X ∈ vars(σTY)}. (1)

The subset of vars(σTX) which were used to evaluate
internal nodes of TX (rather than the leaf) are the

switching parents of X in σ. Intuitively, changes in
the values of switching parents can switch the distri-
bution of X, as well as its set of parents. A switching
variable in σ is a switching parent for one or more
variables in σ. For the CBN of Example 1, the in-
stantiation [WingType=Helicopter, RotorLength=6,
BladeFlash=true] makes WingType a switching par-
ent of both RotorLength and BladeFlash.

An instantiation σ is self-supporting if it supports all
variables in σ. Assuming that the CBN is well-defined
(Milch et al., 2005b), we can define the probability of
a self-supporting instantiation as follows:

p(σ) =
∏

X ∈ vars(σ)

pX(σX | σTX) (2)

An instantiation σ is feasible if p(σ) > 0.

3 Related Work

Milch and Russell (2006) have previously shown
that the state space for Markov chain Monte Carlo
(MCMC) inference in CBNs may consist of mini-
mal partial instantiations that support the evidence,
E, and query variables, Q. This idea has been ex-
ploited to build the current, default inference engine
for BLOG. Standard sampling algorithms for nonpara-
metric, Dirichlet process mixture models use a related
representation: they instantiate parameters for those
mixture components which support the evidence, as
well as a few auxiliary components (Neal, 2000). Our
new algorithm builds on both of these methods.

3.1 Parent-Conditional Sampling

In the absence of a model-specific, user supplied
proposal distribution, BLOG’s existing inference en-
gine relies on a parent-conditional proposal. This
algorithm picks a variable, X, at random from all
non-evidence variables in the current instantiation σ,
V (σ) = vars(σ)−E, and proposes a new instantiation
σ′ with the value of X drawn from pX(· | σTX). If X
was a switching variable in σ, we may then need to in-
stantiate new variables, and uninstantiate unneeded
ones, to make σ′ minimal and self-supporting over
Q ∪ E. All new variables are instantiated with val-
ues drawn from their parent-conditional distribution.

We say that any σ′ constructed by this procedure is

reachable from σ via X, or σ
X σ′. The following

properties are easily seen to be true of reachability.

Proposition 1. A minimal self-supporting feasible in-
stantiation σ′ is reachable from an instantiation σ via
X if and only if X ∈ vars(σ) ∩ vars(σ′), and σ and σ′

agree on all other variables in vars(σ) ∩ vars(σ′).

data Code = Evaluate [Loc] ([Value] -> Code)

| Allocate Code (Loc -> Code)

| Generate [(Value, Prob)]

bernoulli :: Prob -> Code

bernoulli p = Generate [(Bool True , p),

(Bool False, 1-p)]

example :: Code

example = Allocate (bernoulli 0.5) $ \w ->

Allocate (bernoulli 0.5) $ \r ->

Evaluate [w] $ \[Bool w] ->

if w then Evaluate [r] $ \[Bool r] ->

if r then bernoulli 0.4

else bernoulli 0.8

else bernoulli 0.2

10

Through the lens of lazy evaluation

To match dimensions, Wingate et al.’s MH sampler
reuses random choices in the heap from the previous run.
(memoization)

To reject less, Arora et al.’s Gibbs sampler
evaluates code in the context of its desired output.
(destination passing)

11

Summary

Probabilistic programming
I Denote measure by generative story
I Run backwards to infer cause from e�ect

Mathematical reasoning
I De�ne conditioning
I Reduce sampling
I Avoid rejection

Lazy evaluation
I Match dimensions (reversible jump)
I Reject less (Gibbs sampling)
I In�nite domain?

