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A Multigrid Language



ExaSlang: ExaStencils language

Domain: massively parallel geometric Multigrid solvers

©Robert D. Falgout
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ExaSlang: a multi-layered, external DSL

Different layers of ExaSlang address different users and knowledge.

abstract
problem

formulation

concrete
solver

implementation

Layer 1:
Continuous Domain & Continuous Model

Layer 2:
Discrete Domain & Discrete Model

Layer 3:
Algorithmic Components & Parameters

Layer 4:
Complete Program Specification

TargetP
latform

D
escription

Natural
scientists

Mathe-
maticians

Computer
scientists

• Syntax borrowed from Scala
• Parsing and code transformation framework implemented in Scala1

1Christian Schmitt et al. “An Evaluation of Domain-Specific Language Technologies for Code Generation”. In: Proceedings of the 14th International Conference on
Computational Science and its Applications (ICCSA). (Guimaraes, Portugal). IEEE Computer Society, June 30–July 3, 2014, pp. 18–26
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ExaSlang: Layers

Continuous Domain & Continuous Model (Layer 1)

Specification of
• size and structure of computational domain
• variables
• functions and operators (pre-defined functions and operators also available)
• partial differential equation
• mathematics, typically on paper or in LATEX
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ExaSlang: Layers

Continuous Domain & Continuous Model (Layer 1)

Specification of
• size and structure of computational domain
• variables
• functions and operators (pre-defined functions and operators also available)
• partial differential equation
• mathematics, typically on paper or in LATEX

Discrete Domain & Discrete Model (Layer 2)

Discretization of
• computational domain into fragments (e.g., triangles)
• variables to fields (multi-dimensional arrays)

• specification of data types
• choice of discretization strategy
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ExaSlang: Layers

Algorithmic Components & Parameters (Layer 3)

Specification of
• discretized mathematical operators
• multigrid components (e.g., choice of smoother)
• operations in matrix notation
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ExaSlang: Layers

Algorithmic Components & Parameters (Layer 3)

Specification of
• discretized mathematical operators
• multigrid components (e.g., choice of smoother)
• operations in matrix notation

Complete Program Specification (Layer 4)

Specification of
• complete multigrid V-cycle, or custom cycle types
• operations depending on the multigrid level
• loops across computational domain
• communication and data exchange
• interface to third-party code
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ExaSlang 4: Complete Program Specification

Properties

• Procedural
• Statically typed
• External domain-specific language
• Syntax largely inspired by Scala

Function JacobiSmoother@(( coarsest + 1) to finest)() : Unit {
communicate ghost of Solution[active]@current
loop over fragments {

loop over Solution @current {
Solution[next]@current = Solution[active]@current

+ (omega * inverse(diag(Laplace @current))
* (RHS @current - Laplace @current

* Solution[active]@current))
}
advance Solution @current

}
}
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ExaSlang 4: Level Specifications

Multigrid is inherently hierarchical and recursive

: We need
• an exit condition for the

multigrid recursion
• at any one level, access to

the data and functions at
other levels

: Additionally, we would like
• relative addressing
• level-specific aliases
• level-specific variable

definitions

Implementation

• Level numbers, e.g., @0 for bottom level
• Aliases, e.g., @all, @current, @coarser, @coarsest
• Simple expressions, e.g., @(coarsest + 1)

• Ranges, e.g., @(1, 3, 5), @(1 to 5), @(1 to 5, not(3))

• Variables, e.g., i@all, x@0
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ExaSlang 4: Example

Example: exit multigrid recursion

Function WCycle@(all , not(coarsest))() : Unit {
repeat 4 times {

Smoother @current ()
}
UpResidual @current ()
Restriction @current ()
SetSolution @coarser (0)
repeat 2 times {

Wcycle @coarser ()
}
Correction @current ()
repeat 3 times {

Smoother @current ()
}

}

Function WCycle @coarsest () : Unit {
/* ... direct solving ... */

}
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Transformation Framework



Transformation Framework

Algorithmic description

L4IR
IR

IR ... IR

C++ output

parsing

pre
tty

pri
nti

ng

IR = mixture of ExaSlang 4 and C++
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Transformation Framework

Current workflow

1. DSL input (Layer 4) is parsed

2. Parsed input is checked for errors and transformed into the IR

3. Many small, specialized transformations are applied

4. C++ output is prettyprinted
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Transformation Framework

Current workflow

1. DSL input (Layer 4) is parsed

2. Parsed input is checked for errors and transformed into the IR

3. Many small, specialized transformations are applied

4. C++ output is prettyprinted

Concepts

• Major program modifications take place only in IR
• IR can be transformed to C++ code
• Small transformations can be enabled and arranged as necessary
• Central controller keeps track of program generation: StateManager
• Variant generation by program duplication at different transformation stages
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Transformation Framework

Transformations

• Specify transitions between program states (abstract syntax trees)
• Are applied to program state in depth-first order
• May be applied to only part of the program state
• Are aggregated in strategies
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Transformation Framework

Transformations

• Specify transitions between program states (abstract syntax trees)
• Are applied to program state in depth-first order
• May be applied to only part of the program state
• Are aggregated in strategies

Strategies

• Are applied in transactions
• Standard strategy executes all transformations in sequence
• Custom strategies possible
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Transformation Framework

Transactions

• Before execution, a snapshot of the program state is taken
• May be committed or aborted
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Transformation Framework

Transactions

• Before execution, a snapshot of the program state is taken
• May be committed or aborted

Checkpoints

• Copy of program state during compilation
• Serves to restore a program states
• Accelerates variant generation for design space exploration
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Transformation Framework

Two example transformations:

var s = DefaultStrategy("example strategy")

// rename a certain stencil
s += Transformation("rename stencil", {

case x : Stencil if(x.identifier == "foo")
=>
{

if(x.entries.length != 7) error("invalid stencil size")
x.identifier = "bar"; x

}
})

// evaluate additions
s += Transformation("eval adds", {

case AdditionExpression(l : IntegerConstant , r : IntegerConstant)
=> IntegerConstant(l.value + r.value)

})

s.apply // execute transformations sequentially
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Optimizations



Polyhedral Model Extraction

Iteration domain

• Described by a single loop over <field>

• No need to deal with nested loops
• Consecutive loops may be merged

Memory accesses

Modelling takes place before accesses are linearized
: Allows to model code using, e.g., triangular fields

x

y

a[(y*y+y)/2+x]

vs.
a[y][x]
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Polyhedral Model Optimization

Optimization steps

1. Compute dependences

2. Eliminate dead statement instances

3. Search an optimal schedule

• choose from a number of custom schedulers

, or
• perform a complete search space exploration

4. Tile individual dimensions in the model
• tile shape is rectangular in the optimized target code
• tile size can be prespecified, partially prespecified, or deduced

5. Rebuild abstract syntax tree

Optimization levels

0. Disable all polyhedral optimizations

1. Perform dependence analysis only

2. Optimize schedule, but do not tile

3. Do everything
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Other Optimizations

• Address precalculation
• Standard optimization in production compilers
• Not always applied, since other transformations can stand in its way
• : We implemented a more advanced version directly

• Arithmetic simplification
• Convert division by a constant to multiplication by its inverse
• Evaluate subexpressions as far as possible
• Apply law of distributivity in order to

• factor out repeated loads of the same array element
• reduce the number of multiplications required

• Vectorization (SSE3, AVX, AVX2, QPX, NEON)
• The use of vector units is mandatory to achieve best performance
• Contemporary compilers are unable to emit efficient vector code
• : Explicit vectorization during generation

• Loop unrolling
• Duplicate loop body to reduce branch penalty, condition evaluation, etc.
• Two modes supported

• Duplicate entire body at once
• Duplicate each statement in-place

(could be preferable on in-order architectures)
• Special attention: reducing the number of loads in an interpolation

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer | ExaStencils | The ExaStencils DSL ExaSlang 15



Other Optimizations

• Address precalculation
• Standard optimization in production compilers
• Not always applied, since other transformations can stand in its way
• : We implemented a more advanced version directly

• Arithmetic simplification
• Convert division by a constant to multiplication by its inverse
• Evaluate subexpressions as far as possible
• Apply law of distributivity in order to

• factor out repeated loads of the same array element
• reduce the number of multiplications required

• Vectorization (SSE3, AVX, AVX2, QPX, NEON)
• The use of vector units is mandatory to achieve best performance
• Contemporary compilers are unable to emit efficient vector code
• : Explicit vectorization during generation

• Loop unrolling
• Duplicate loop body to reduce branch penalty, condition evaluation, etc.
• Two modes supported

• Duplicate entire body at once
• Duplicate each statement in-place

(could be preferable on in-order architectures)
• Special attention: reducing the number of loads in an interpolation

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer | ExaStencils | The ExaStencils DSL ExaSlang 15



Other Optimizations

• Address precalculation
• Standard optimization in production compilers
• Not always applied, since other transformations can stand in its way
• : We implemented a more advanced version directly

• Arithmetic simplification
• Convert division by a constant to multiplication by its inverse
• Evaluate subexpressions as far as possible
• Apply law of distributivity in order to

• factor out repeated loads of the same array element
• reduce the number of multiplications required

• Vectorization (SSE3, AVX, AVX2, QPX, NEON)
• The use of vector units is mandatory to achieve best performance
• Contemporary compilers are unable to emit efficient vector code
• : Explicit vectorization during generation

• Loop unrolling
• Duplicate loop body to reduce branch penalty, condition evaluation, etc.
• Two modes supported

• Duplicate entire body at once
• Duplicate each statement in-place

(could be preferable on in-order architectures)
• Special attention: reducing the number of loads in an interpolation

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer | ExaStencils | The ExaStencils DSL ExaSlang 15



Other Optimizations

• Address precalculation
• Standard optimization in production compilers
• Not always applied, since other transformations can stand in its way
• : We implemented a more advanced version directly

• Arithmetic simplification
• Convert division by a constant to multiplication by its inverse
• Evaluate subexpressions as far as possible
• Apply law of distributivity in order to

• factor out repeated loads of the same array element
• reduce the number of multiplications required

• Vectorization (SSE3, AVX, AVX2, QPX, NEON)
• The use of vector units is mandatory to achieve best performance
• Contemporary compilers are unable to emit efficient vector code
• : Explicit vectorization during generation

• Loop unrolling
• Duplicate loop body to reduce branch penalty, condition evaluation, etc.
• Two modes supported

• Duplicate entire body at once
• Duplicate each statement in-place

(could be preferable on in-order architectures)
• Special attention: reducing the number of loads in an interpolation

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer | ExaStencils | The ExaStencils DSL ExaSlang 15



Partitioning the Computational Domain(s)



Domain Partitioning – Our Scope

• Presently: uniform grids

• Eventually: hierarchical hybrid grids (HHGs)
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Domain Partitioning – Concept

• Easy for regular domains

Each domain consists
of one or more blocks

Each block consists of
one or more
fragments

Each fragment
consists of several
data points / cells

• More complicated for HHG
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Domain Partitioning – Mapping to Parallelism

• Domain partition maps directly to different parallelization interfaces, e.g., MPI
and OMP:
• Each block corresponds to one MPI rank
• Each fragment corresponds to one OMP rank
• If single fragment per block, direct parallelization of kernels in OMP
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Domain Partitioning – Mapping to Parallelism

• Domain partition maps directly to different parallelization interfaces, e.g., MPI
and OMP:
• Each block corresponds to one MPI rank
• Each fragment corresponds to one OMP rank
• If single fragment per block, direct parallelization of kernels in OMP

• Easily mapped to different interfaces:
• PGAS
• MPI and PGAS
• MPI and CUDA

• Communication – current state:
• Mapping to fragments is declared at Layer 4
• Communication statements are added automatically when transforming Layer 3

to Layer 4, where they may be reviewed or adapted
• Actual realization, i.e., usage of synchronous and/or asynchronous MPI

operations is up to the generator
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Results



Node-Level Performance
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Node-Level Performance

3D 7-point Jacobi smoother
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Benchmark Problem and System

• Target system
• JUQUEEN supercomputer located in Jülich, Germany
• 458,752 cores / 28,672 nodes (1.6 GHz, 16 cores each, four-way

multithreading)
• Considered problem

• 3D finite differences discretization of Poisson’s equation (∆φ = f ) with
Dirichlet boundary conditions

• V(3,3) cycle, parallel CG as direct solver (coarse grid solver)
• Jacobi, Gauss-Seidel or red-black Gauss-Seidel smoother
• pure MPI or hybrid MPI/OMP parallelization
• 64 threads per node, roughly 106 unknowns per core
• code optimized through polyhedral loop transformations, 2-way unrolling and

address precalculation on finer levels as well as custom MPI data types
• vectorization and blocking are not yet included
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Weak Scalability

• Mean time per V-cycle
• V(3,3) with Jacobi and CG

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 448k

2
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number of cores

to
ta
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e

[s
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Pure MPI 32 MPI × 2 OMP 16 MPI × 4 OMP 8 MPI × 8 OMP

4 MPI × 16 OMP 2 MPI × 32 OMP 1 MPI × 64 OMP
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ExaStencils Framework: Comparison of Lines of Code

Jacobi
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ExaStencils Framework: Program Sizes during Transformation
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ExaStencils Funding Period 2 (2016–2018)



Done and to be Done

Done To be Done

Domain Scalar elliptic PDEs Linear elasticity equations
Navier-Stokes equations

Solvers Jacobi Vanka (multiple unknowns)
Red-Black (Gauss-Seidel) Multi-color smoothers
Conjugate Gradient Block smoothers

Clusters BlueGene Q ARM
Intel

Accelerators FPGAs (multi-)GPUs
ExaSlang Level 4 Levels 1–3
TPDL Sketch Full design
Applications Non-Newtonian fluids

Quantum chemistry
Medical image processing

Performance Execution speed Energy awareness
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Thanks for listening.

E  aStencils
ExaStencils – Advanced Stencil Code Engineering

http://www.exastencils.org
ExaStencils is funded by the German Research Foundation (DFG)

as part of the Priority Programme 1648 (Software for Exascale Computing).
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