ExaStencils 3??355

The ExaStencils DSL ExaSlang

Christian Schmitt', Stefan Kronawitter?, Sebastian Kuckuk®, Frank Hannig',

Jurgen Teich', Harald Kastler®, Ulrich Raide®, Christian Lengauer?

' Hardware/Software Co-Design, Friedrich-Alexander Universitat Erlangen-Niirnberg (FAU)
2 Chair of Programming, University of Passau

8 System Simulation, Friedrich-Alexander-Universitat Erlangen-Nirnberg (FAU)

IFIP WG 2.11 Meeting, London, 9-12 November 2015

Christian Schmitt et al. “ExaSlang: A Domain-Specific Language for Highly Scalable Multigrid Solvers”. In: Proceedings of the 4th
International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC). (New
Orleans, LA, USA). IEEE Computer Society, Nov. 17, 2014, pp. 42-51

E ET]IE[I;:g?i?LEXANDER f;}] U N IVERSITAT 3

ERLANGEN-NURNBERG

A Multigrid Language

ExaSlang: ExaStencils language

Domain: massively parallel geometric Multigrid solvers

ﬂ\."‘ /
‘j“\

bl
& W

VR A
oy

2y

" ('
"4‘?‘ ‘- 0
Hu o ._h.»‘!;}:.". 0

Smooth

R,
(0
Ky

Finest Grid

Fewer ___—»
Dofs

First Coarse Grid

©Robert D. Falgout

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer

ExaStencils

The ExaStencils DSL ExaSlang

The Multigrid

V-cycle

]

Prolongation

Different layers of ExaSlang address different users and knowledge.

abstract

coblem Layer 1:
fo‘:mulaﬁon Continuous Domain & Continuous Model =]
(=)
[}
Layer 2: T
Discrete Domain & Discrete Model %
3
Layer 3: 9
Algorithmic Components & Parameters 2
:
concrete =
solver Layer 4: - S
implementation Complete Program Specification

Syntax borrowed from Scala
Parsing and code transformation framework implemented in Scala’

" Christian Schmitt et al. “An Evaluation of Domain-Specific Language Technologies for Code Generation”. In ings of the 14th Int
Computational Science and its Applications (ICCSA). (Guimaraes, Portugal). IEEE Computer Society, June 30—-July 3, 2014, pp. 18-26

on

Continuous Domain & Continuous Model ()

Specification of
size and structure of computational domain
variables
functions and operators (pre-defined functions and operators also available)
partial differential equation
mathematics, typically on paper or in IATEX

Continuous Domain & Continuous Model ()

Specification of
size and structure of computational domain
variables
functions and operators (pre-defined functions and operators also available)
partial differential equation
mathematics, typically on paper or in IATEX

Discrete Domain & Discrete Model (Layer 2)

Discretization of
computational domain into fragments (e.g., triangles)
variables to fields (multi-dimensional arrays)

specification of data types
choice of discretization strategy

Algorithmic Components & Parameters (Layer 3)

Specification of
discretized mathematical operators
multigrid components (e.g., choice of smoother)
operations in matrix notation

Algorithmic Components & Parameters (Layer 3)

Specification of
discretized mathematical operators
multigrid components (e.g., choice of smoother)
operations in matrix notation

Complete Program Specification (Layer 4)

Specification of
complete multigrid V-cycle, or custom cycle types
operations depending on the multigrid level
loops across computational domain
communication and data exchange
interface to third-party code

ExaSlang 4: Complete Program Specification

Properties

* Procedural

e Statically typed

¢ External domain-specific language
e Syntax largely inspired by Scala

Function JacobiSmoother@((coarsest + 1) to finest)() : Unit {
communicate ghost of Solution[activel@current
loop over fragments {
loop over Solution@current {
Solution[next]@current = Solution[active]@current
+ (omega * inverse(diag(Laplace@current))
* (RHS@current - Laplace@current
* Solution[active]l@current))

}

advance Solution@current

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang

ExaSlang 4: Complete Program Specification

Properties

* Procedural

e Statically typed

¢ External domain-specific language
e Syntax largely inspired by Scala

Function JacobiSmoother@((coarsest + 1) to finest)() : Unit {

communicate ghost of Solution[activel@current
loop over fragments {

loop over Solution@current {

Solution[next]@current = Solution[active]@current
+ (omega * inverse(diag(Laplace@current))
* (RHS@current - Laplace@current
* Solution[active]@current))
¥

advance Solution@current

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang

Multigrid is inherently hierarchical and recursive

- We need - Additionally, we would like
an exit condition for the relative addressing
multigrid recursion level-specific aliases
at any one level, access to level-specific variable
the data and functions at definitions
other levels

Implementation

Level numbers, e.g., @o for bottom level

Aliases, e.g., @all, @current, @coarser, @coarsest
Simple expressions, e.g., @(coarsest + 1)

Ranges, e.g., @(1, 3, 5),@(1 to 5), @1 to 5, not(3))
Variables, e.g., ieall, xeo

ExaSlang 4: Example

Example: exit multigrid recursion

Function WCycle@(all, not(coarsest)) ()
repeat 4 times {
Smoother@current ()
3
UpResidual@current ()
Restriction@current ()
SetSolution@coarser (0)
repeat 2 times {
Wcycle@coarser ()
3
Correction@current ()
repeat 3 times {
Smoother@current ()
¥
}

Function WCycle@coarsest() : Unit {
/* ...direct solving... */

}

Unit {

2h

4h

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang

Transformation Framework

Transformation Framework

=

Algorithmic description

O
L 9-®
N

IR = mixture of ExaSlang 4 and C++

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils | The ExaStencils DSL

Current workflow

DSL input (Layer 4) is parsed

Parsed input is checked for errors and transformed into the IR
Many small, specialized transformations are applied

C++ output is prettyprinted

Current workflow

DSL input (Layer 4) is parsed

Parsed input is checked for errors and transformed into the IR
Many small, specialized transformations are applied

C++ output is prettyprinted

Concepts

Major program modifications take place only in IR

IR can be transformed to C++ code

Small transformations can be enabled and arranged as necessary

Central controller keeps track of program generation: StateManager
Variant generation by program duplication at different transformation stages

Transformations

Specify transitions between program states (abstract syntax trees)
Are applied to program state in depth-first order

May be applied to only part of the program state

Are aggregated in strategies

Transformations

Specify transitions between program states (abstract syntax trees)
Are applied to program state in depth-first order

May be applied to only part of the program state

Are aggregated in strategies

Strategies

Are applied in transactions
Standard strategy executes all transformations in sequence
Custom strategies possible

Transformation Framework

Transactions

* Before execution, a snapshot of the program state is taken
* May be committed or aborted

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang

Transactions
Before execution, a snapshot of the program state is taken

May be committed or aborted

Checkpoints

Copy of program state during compilation
Serves to restore a program states
Accelerates variant generation for design space exploration

Transformation Framework

Two example transformations:

var s = DefaultStrategy("example strategy")

// rename a certain stencil

s += Transformation(”"rename stencil”, {
case x : Stencil if(x.identifier == "foo")
=>
{
if(x.entries.length != 7) error("invalid stencil size")
x.identifier = "bar"; x
¥
H

// evaluate additions
s += Transformation("eval adds"”, {
case AdditionExpression(l : IntegerConstant, r : IntegerConstant)
=> IntegerConstant(l.value + r.value)

H

s.apply // execute transformations sequentially

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang 12

Optimizations

Polyhedral Model Extraction

Iteration domain

¢ Described by a single loop over <field>
* No need to deal with nested loops
¢ Consecutive loops may be merged

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang

Iteration domain
Described by a single loop over <field>
No need to deal with nested loops
Consecutive loops may be merged

Memory accesses

Modelling takes place before accesses are linearized
=-> Allows to model code using, e.qg., triangular fields

al(y*xy+y)/2+x]
vS.
alyl[x]

Optimization steps

Compute dependences
Eliminate dead statement instances
Search an optimal schedule

choose from a number of custom schedulers

Tile individual dimensions in the model

tile shape is rectangular in the optimized target code
tile size can be prespecified, partially prespecified, or deduced

Rebuild abstract syntax tree

Optimization steps

Compute dependences
Eliminate dead statement instances
Search an optimal schedule

choose from a number of custom schedulers, or
perform a complete search space exploration

Tile individual dimensions in the model

tile shape is rectangular in the optimized target code
tile size can be prespecified, partially prespecified, or deduced

Rebuild abstract syntax tree

Optimization steps

Compute dependences
Eliminate dead statement instances
Search an optimal schedule

choose from a number of custom schedulers, or
perform a complete search space exploration

Tile individual dimensions in the model

tile shape is rectangular in the optimized target code
tile size can be prespecified, partially prespecified, or deduced

Rebuild abstract syntax tree

Optimization levels

Disable all polyhedral optimizations
Perform dependence analysis only
Optimize schedule, but do not tile
Do everything

Address precalculation

Standard optimization in production compilers
Not always applied, since other transformations can stand in its way
=> We implemented a more advanced version directly

Address precalculation

Standard optimization in production compilers
Not always applied, since other transformations can stand in its way
=> We implemented a more advanced version directly

Arithmetic simplification
Convert division by a constant to multiplication by its inverse
Evaluate subexpressions as far as possible
Apply law of distributivity in order to
factor out repeated loads of the same array element
reduce the number of multiplications required

Address precalculation

Standard optimization in production compilers
Not always applied, since other transformations can stand in its way
=> We implemented a more advanced version directly

Arithmetic simplification
Convert division by a constant to multiplication by its inverse
Evaluate subexpressions as far as possible
Apply law of distributivity in order to
factor out repeated loads of the same array element
reduce the number of multiplications required
Vectorization (SSE3, AVX, AVX2, QPX, NEON)
The use of vector units is mandatory to achieve best performance
Contemporary compilers are unable to emit efficient vector code
=> Explicit vectorization during generation

Address precalculation

Standard optimization in production compilers
Not always applied, since other transformations can stand in its way
=> We implemented a more advanced version directly

Arithmetic simplification
Convert division by a constant to multiplication by its inverse
Evaluate subexpressions as far as possible
Apply law of distributivity in order to
factor out repeated loads of the same array element
reduce the number of multiplications required
Vectorization (SSE3, AVX, AVX2, QPX, NEON)
The use of vector units is mandatory to achieve best performance
Contemporary compilers are unable to emit efficient vector code
=> Explicit vectorization during generation
Loop unrolling
Duplicate loop body to reduce branch penalty, condition evaluation, etc.
Two modes supported
Duplicate entire body at once
Duplicate each statement in-place
(could be preferable on in-order architectures)
Special attention: reducing the number of loads in an interpolation

Partitioning the Computational Domain(s)

Domain Partitioning — Our Scope

¢ Presently: uniform grids

e Eventually: hierarchical hybrid grids (HHGs)

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang

Domain Partitioning — Concept

¢ Easy for regular domains

Each domain consists Each block consists of
of one or more blocks one or more
fragments

Each fragment
consists of several
data points / cells

* More complicated for HHG

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer | ExaStencils The ExaStencils DSL ExaSlang

Domain partition maps directly to different parallelization interfaces, e.g., MPI
and OMP:

Each block corresponds to one MPI rank

Each fragment corresponds to one OMP rank

If single fragment per block, direct parallelization of kernels in OMP

Domain partition maps directly to different parallelization interfaces, e.g., MPI
and OMP:

Each block corresponds to one MPI rank

Each fragment corresponds to one OMP rank

If single fragment per block, direct parallelization of kernels in OMP

Easily mapped to different interfaces:
PGAS

MPI and PGAS
MPI and CUDA

Domain partition maps directly to different parallelization interfaces, e.g., MPI
and OMP:

Each block corresponds to one MPI rank

Each fragment corresponds to one OMP rank

If single fragment per block, direct parallelization of kernels in OMP

Easily mapped to different interfaces:
PGAS

MPI and PGAS
MPI and CUDA
Communication — current state:
Mapping to fragments is declared at Layer 4
Communication statements are added automatically when transforming Layer 3
to Layer 4, where they may be reviewed or adapted
Actual realization, i.e., usage of synchronous and/or asynchronous MPI
operations is up to the generator

Node-Level Performance

3D 7-point Jacobi smoother
Intel IvyBridge EP

00
200 -+-vreee e e
O
B

2100_ ...

MLUP/s

1400_ ...

700 e o ST PP PTU

0_ ...

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengaue

Node-Level Performance

3D 7-point Jacobi smoother
Intel IvyBridge EP

4900_ noopts ...
4200478 RO ONIY.
3500_ ...
& 2800
2
E 2100+
1400+
700+
0_
I T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
Cores

C. Schmitt, S. Krol

Node-Level Performance

3D 7-point Jacobi smoother
Intel IvyBridge EP

4900_ noopts ...
4200478 RO ONIY. e
all opts
3500_ ...
= 2800~
2
E 2100_
1400
700+
0_
I T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
Cores

C. Schmitt, S. Krol

Node-Level Performance

3D 7-point Jacobi smoother

Intel IvyBridge (consumer)

18007 252 Kand-tuned
generated

1500

1200+

900

MLUP/s

600

300+

0_

C. Schmitt, S. Krof r, S. Kuckuk, C. Lengaue!

3D 7-point Jacobi smoother

Intel IvyBridge (consumer)

1800_ hand_tuned ..

generated

1500

1200+

900

MLUP/s

600

300+

0_ ...

Cores

generated: 8 LOC ExaSlang 4 — 4215 LOC C++ (up to 1108 characters per line)

Target system

JUQUEEN supercomputer located in Jilich, Germany
458,752 cores / 28,672 nodes (1.6 GHz, 16 cores each, four-way
multithreading)

Considered problem
3D finite differences discretization of Poisson’s equation (A¢ = f) with
Dirichlet boundary conditions
V(3,3) cycle, parallel CG as direct solver (coarse grid solver)
Jacobi, Gauss-Seidel or red-black Gauss-Seidel smoother
pure MPI or hybrid MPI/OMP parallelization
64 threads per node, roughly 108 unknowns per core
code optimized through polyhedral loop transformations, 2-way unrolling and
address precalculation on finer levels as well as custom MPI data types
vectorization and blocking are not yet included

Weak Scalability

¢ Mean time per V-cycle
* V(3,3) with Jacobi and CG

12

10

total runtime [s]
(2] o
T T

Tl ! ! ! ! ! ! ! ! ! |
512 1k 2k 4k 8k 16k 32k 64k 128k 256k 448k

number of cores

_ Pure MPI —— 32MPI X 20MP —— 16 MPI X 4 OMP —— 8 MPI x 8 OMP
—— 4 MPI X 16 OMP —— 2 MPI X 32 OMP —— 1 MPI X 64 OMP

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils The ExaStencils DSL ExaSlang

22

ExaStencils Framework: Comparison of Lines of Code

ExaSlang 4 = C++ Pure MPI C++ Hybrid MPI/OMP
244
Jacobi [N I N N S 1125
13,432
236
Gauss-Seide! | NN M Y Y o 500
11,320
240
Red-Black GS NN I M S) 776
12,887

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer ExaStencils | The ExaStencils DSL 23

ExaStencils Framework: Program Sizes during Transformation

-10*
8r _/—/"'L_/—f_
6 —
§2]
c
£ 4f
o
[0}
2 —
0= ! ! ! ! ! |
0 10 20 30 40 50 60

transformation

C. Schmitt, S. Kronawitter, S. Kuckuk, C. Lengauer | The ExaStencils DSL 24

ExaStencils Funding Period 2 (2016-2018)

Done

To be Done

Domain Scalar elliptic PDEs Linear elasticity equations
Navier-Stokes equations
Solvers Jacobi Vanka (multiple unknowns)
Red-Black (Gauss-Seidel) | Multi-color smoothers
Conjugate Gradient Block smoothers
Clusters BlueGene Q ARM
Intel
Accelerators | FPGAs (multi-)GPUs
ExaSlang Level 4 Levels 1-3
TPDL Sketch Full design
Applications Non-Newtonian fluids
Quantum chemistry
Medical image processing
Performance | Execution speed Energy awareness

Thanks for listening.

FxaStencils

ExaStencils — Advanced Stencil Code Engineering

http://www.exastencils.org

ExaStencils is funded by the German Research Foundation (DFG)
as part of the Priority Programme 1648 (Software for Exascale Computing).

http://www.exastencils.org

	A Multigrid Language
	Transformation Framework
	Optimizations
	Partitioning the Computational Domain(s)
	Results
	ExaStencils Funding Period 2 (2016–2018)

