

1. Overview

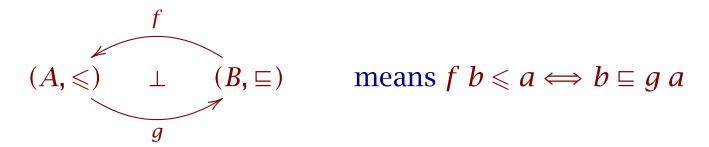
- relational databases in terms of certain *monads* (sets, bags, lists)
- monads support *comprehensions*, providing a *query notation*:

```
[ (customer.name, invoice.amount)
| customer ← customers,
invoice ← invoices, invoice.due ≤ today,
customer.cid == invoice.customer]
```

- monads have nice mathematical foundations via *adjunctions*
- monad structure explains aggregation, selection, projection
- less obvious how to explain *join*

2. Galois connections

Relating monotonic functions between two ordered sets:



For example,

"Change of coordinates" can sometimes simplify reasoning. Eg rhs gives $n \times k \le m \iff n \le m \div k$, and multiplication is easier to reason about

than rounding division.

3. Category theory from ordered sets

A category **C** consists of

- a set* |C| of *objects*,
- a set* C(X, Y) of arrows $X \to Y$ for each X, Y : |C|,
- *identity* arrows $id_X: X \to X$ for each X
- *composition* $f \cdot g: X \to Z$ of compatible arrows $g: X \to Y$ and $f: Y \to Z$,
- such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, \leq) is a degenerate category, with objects A and a unique arrow $a \rightarrow b$ iff $a \leq b$.

$$-2$$
 -1 0 1 2 \cdots

Many categorical concepts are generalisations from ordered sets.

4. Concrete categories

Ordered sets are a *concrete category*: roughly,

- the objects are sets with additional structure
- the arrows are *structure-preserving mappings*

For example, category **PoSet** has preordered sets (A, \leq) as objects, and monotonic functions $h: (A, \leq) \to (B, \sqsubseteq)$ as arrows:

$$a \leqslant a' \Longrightarrow h(a) \sqsubseteq h(a')$$

For another example, category **CMon** has commutative monoids (M, \otimes, ϵ) as objects, and homomorphisms $h: (M, \otimes, \epsilon) \to (M', \oplus, \epsilon')$ as arrows:

```
h(m \otimes n) = h m \oplus h n

h \in = \epsilon'
```

Trivially, category **Set** has sets (no additional structure) as objects, and total functions as arrows.

5. Functors

Categories are themselves structured objects...

A *functor* $F : \mathbb{C} \to \mathbb{D}$ is an operation on both objects and arrows, preserving the structure: $F : F \times X \to F \times Y$ when $f : X \to Y$, and

$$F id_X = id_{FX}$$

$$F (f \cdot g) = F f \cdot F g$$

For example, *forgetful* functor U : CMon → Set:

$$\begin{array}{ll} \mathsf{U}\;(M,\otimes,\varepsilon) & = M \\ \mathsf{U}\;(h\colon (M,\otimes,\varepsilon)\to (M',\oplus,\varepsilon')) & = h\colon M\to M' \end{array}$$

Conversely, Free: Set \rightarrow CMon generates the *free* commutative monoid (ie bags) on a set of elements:

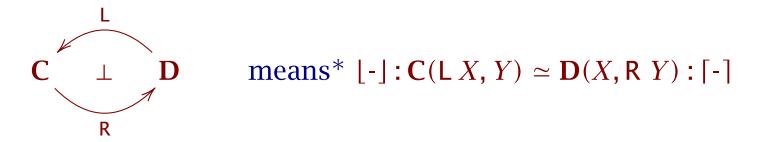
Free
$$A = (Bag A, \uplus, \varnothing)$$

Free $(f : A \rightarrow B) = map f : Bag A \rightarrow Bag B$

6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

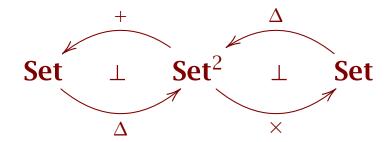
Given categories C, D, and functors $L:D \rightarrow C$ and $R:C \rightarrow D$, adjunction



The functional programmer's favourite example is given by *currying*:

hence definitions and properties of apply = uncurry $id_{Y^P}: Y^P \times P \rightarrow Y$.

7. Products and coproducts



with

```
fork : \mathbf{Set}^2(\Delta A, (B, C)) \simeq \mathbf{Set}(A, B \times C) : fork^\circ

junc^\circ : \mathbf{Set}(A + B, C) \simeq \mathbf{Set}^2((A, B), \Delta C) : junc
```

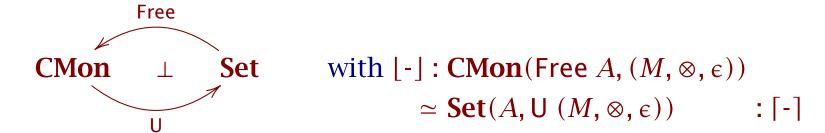
hence

```
dup = fork id_{A,A} : \mathbf{Set}(A, A \times A)
(fst, snd) = fork^{\circ} id_{B \times C} : \mathbf{Set}^{2}(\Delta(B, C), (B, C))
```

give tupling and projection. Dually for sums and injections. And more generally for any arity—even zero.

8. Free commutative monoids

Free/forgetful adjunction:



Unit and counit:

```
single\ A = \lfloor id_{\mathsf{Free}\ A} \rfloor : A \to \mathsf{U}\ (\mathsf{Free}\ A)
(\mathsf{M}) = \lceil id_{\mathsf{M}} \rceil : \mathsf{Free}\ (\mathsf{U}\ \mathsf{M}) \to \mathsf{M} - \mathsf{for}\ \mathsf{M} = (M, \otimes, \varepsilon)
\mathsf{whence},\ \mathsf{for}\ h : \mathsf{Free}\ A \to \mathsf{M}\ \mathsf{and}\ f : A \to \mathsf{U}\ \mathsf{M} = M,
h = (\!|\mathsf{M}|\!) \cdot \mathsf{Free}\ f \iff \mathsf{U}\ h \cdot single\ A = f
```

ie 1-to-1 correspondence between (i) homomorphisms from the free commutative monoid (bags) and (ii) their behaviour on singletons.

9. Aggregation

Aggregations are bag homomorphisms:

aggregation	monoid	action on singletons
count	$(\mathbb{N},0,+)$	$(a) \mapsto 1$
sum	$(\mathbb{N}, 0, +)$ $(\mathbb{R}, 0, +)$ $(\mathbb{Z} \cup \{-\infty\}, -\infty, max)$	$(a) \mapsto a$
max	$(\mathbb{Z} \cup \{-\infty\}, -\infty, max)$	$(a) \mapsto a$
all	$(\mathbb{B}, True, \wedge)$	$(a) \mapsto a$

Projection $\pi_i = \text{Bag } i$ is a homomorphism—just functorial action. Selection σ_p is also a homomorphism, to bags, with action

$$guard: (A \to \mathbb{B}) \to \text{Bag } A \to \text{Bag } A$$
 $guard \ p \ a = \text{if } p \ a \text{ then } \{a\} \text{ else } \emptyset$

Projection and selection laws follow from homomorphism laws (and from laws of coproducts, since $\mathbb{B} = 1 + 1$).

10. Monads

Finite bags form a *monad* (Bag, *union*, *single*) with

Bag = $U \cdot Free$

union: Bag (Bag A) \rightarrow Bag A

 $single: A \rightarrow Bag A$

which justifies the use of comprehension notation

If
$$a b \lor a \leftarrow x, b \leftarrow g a$$

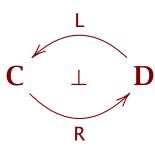
and its equational properties.

In fact, any adjunction $L \rightarrow R$ yields a monad (T, μ, η) on **D**, where

$$T = R \cdot L$$

$$\mu A = R \lceil id_A \rceil L : T (T A) \rightarrow T A$$

$$\eta A = \lfloor id_A \rfloor : A \rightarrow T A$$



11. Maps

Database indexes are essentially maps $\operatorname{\mathsf{Map}}\nolimits K V = V^K$. Maps $(-)^K$ from K form a monad (the *Reader* monad in Haskell), so arise from an adjunction.

The *laws of exponents* follow from this adjunction, and from those for products and coproducts:

```
Map 0\ V\simeq 1

Map 1\ V\simeq V

Map (K_1+K_2)\ V\simeq \operatorname{Map}\ K_1\ V\times \operatorname{Map}\ K_2\ V

Map (K_1\times K_2)\ V\simeq \operatorname{Map}\ K_1\ (\operatorname{Map}\ K_2\ V)

Map K\ 1\simeq 1

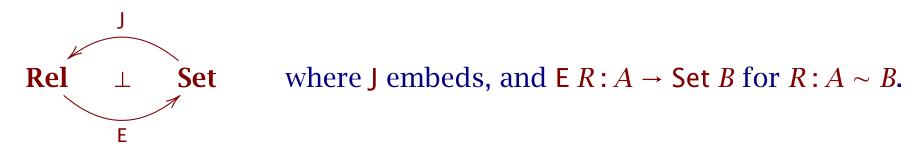
Map K\ (V_1\times V_2)\simeq \operatorname{Map}\ K\ V_1\times \operatorname{Map}\ K\ V_2: merge
```

—ie *merge* is right-to-left half of the latter iso:

```
merge: \mathsf{Map}\ K\ V_1 \times \mathsf{Map}\ K\ V_2 \to \mathsf{Map}\ K\ (V_1 \times V_2)
```

12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:



Moreover, the correspondence remains valid for bags:

```
index: Bag (K \times V) \simeq Map K (Bag V)
```

Together, *index* and *merge* give efficient relational joins:

```
x_f \bowtie_g y = flatten (\mathsf{Map}\ K\ cp\ (merge\ (groupBy\ f\ x, groupBy\ g\ y)))
groupBy: Eq\ K \Rightarrow (V \to K) \to \mathsf{Bag}\ V \to \mathsf{Map}\ K\ (\mathsf{Bag}\ V)
flatten: \mathsf{Map}\ K\ (\mathsf{Bag}\ V) \to \mathsf{Bag}\ V
```

expressible also via *comprehensive comprehensions*

13. Finiteness

A catch:

- being *finite* is important, for aggregations
- begin a *monad* is important, for comprehensions
- *finite bags* form a monad (as above)
- maps form a monad, but finite maps do not: the unit

$$\eta \ a = (\lambda k \to a) : A \to \mathsf{Map} \ K A$$

generally yields an infinite map.

How to reconcile finiteness of maps with being a monad?

14. Graded monads

Grading (indexing, parametrizing) a monad by a monoid: an indexed family of endofunctors that collectively behave like a monad.

For monoid $M = (M, \otimes, \epsilon)$, the M-graded monad (T, μ, η) is a family T_m of endofunctors indexed by m: M, with

$$\mu X : \mathsf{T}_m (\mathsf{T}_n X) \to \mathsf{T}_{m \otimes n} X$$

 $\eta X : X \to \mathsf{T}_{\varepsilon} X$

satisfying the usual laws. These too arise from adjunctions (even though T itself is not an endofunctor!).

For example, think of finite vectors, indexed by length.

We use the monoid ($\mathbb{K}*$, ++, $\langle \rangle$) of finite sequences of finite key types \mathbb{K} .

15. Query transformations

These can now all be shown by equational reasoning:

```
\pi_{i} \cdot \pi_{j} = \pi_{i} \quad \text{when } i \cdot j = i
\sigma_{p} \cdot \pi_{i} = \pi_{i} \cdot \sigma_{p} \quad \text{when } p \cdot i = p
\|M\| \cdot \text{Bag } f \cdot \pi_{i} = \|M\| \cdot \text{Bag } (f \cdot i)
\|M\| \cdot \text{Bag } f \cdot \sigma_{p} = \|M\| \cdot \text{Bag } (\lambda a \to \text{if } p \text{ a then } f \text{ a else } \epsilon)
x_{f} \bowtie_{g} y = \text{Bag } swap (y_{g} \bowtie_{f} x)
(x_{f} \bowtie_{g} y)_{(g \cdot snd)} \bowtie_{h} z = \text{Bag } assoc (x_{f} \bowtie_{(g \cdot fst)} (y_{g} \bowtie_{h} z))
\pi_{i \times j} (x_{f} \bowtie_{g} y) = \pi_{i} x_{f'} \bowtie_{g'} \pi_{j} y \quad \text{when } f \text{ a = g } b \iff f' \text{ (i a) = g' (j b)}
\sigma_{p} (x_{f} \bowtie_{g} y) = \sigma_{q} x_{f} \bowtie_{g} \sigma_{r} y \quad \text{when } p (a, b) = q \text{ a} \land r b
```

for monoid $M = (M, \otimes, \epsilon)$.

16. Summary

- monad comprehensions for database queries
- structure arising from *adjunctions*
- equivalences from *universal properties*
- fitting in *relational joins*, via indexing and graded monads
- calculating query transformations

Paper to appear at ICFP 2018.

Thanks to EPSRC Unifying Theories of Generic Programming for funding.

