——

Relational Algebra
by Way of Adjunctions

Jeremy Gibbons
Fritz Henglein S
Ralf Hinze

Nicolas Wu

1. Overview

e relational databases in terms of certain monads (sets, bags, lists)

e monads support comprehensions, providing a query notation:

[(customer.name, invoice.amount)

| customer ~ customers,
Invoice ~ invoices, invoice.due < today,
customer.cid == invoice.customer]

e monads have nice mathematical foundations via adjunctions
e monad structure explains aggregation, selection, projection

e less obvious how to explain join

2. Galois connections

Relating monotonic functions between two ordered sets:

f

PR
(A,) [1B, 01 meansfb<alldIgh
~_ 7

g

For example,

inj <K
/_\ /_\
R,=x) L1 =z) (Z,<) L 1(Z,<)
_/ _/
floor =k

“Change of coordinates” can sometimes simplify reasoning.
Egrhs gives n xk < m LI dX m =k, and multiplication is easier to reason about
than rounding division.

3. Category theory from ordered sets

A category C consists of
e a set™C] of objects,
e asetC(X,Y) of arrows X - Y for each X,Y :|C],
e identity arrows idyx : X - X for each X
e composition f - g: X - Z of compatible arrowsg: X - Yandf:Y - Z,
e such that composition is associative, with identities as units.

Think of a directed graph, with vertices as objects and paths as arrows.

An ordered set (A, <) Is a degenerate category, with objects A and a unique arrow
a- biffa<hb.

—2 —1 0] 1 2

Many categorical concepts are generalisations from ordered sets.

Lstoviso. . .

4. Concrete categories

Ordered sets are a concrete category: roughly,
e the objects are sets with additional structure
e the arrows are structure-preserving mappings

For example, category PoSet has preordered sets (A, <) as objects, and monotonic
functions h: (A, <) - (B, D_ds arrows:

a < a=Chk) h{a)

For another example, category CMon has commutative monoids (M, [, €) as
objects, and homomorphisms h: (M, [€) - (M5 Cel) as arrows:

h(m [n)=hm [hh

h e = U

Trivially, category Set has sets (no additional structure) as objects, and total
functions as arrows.

5. Functors

Categories are themselves structured objects. ..

A functor F: C - D is an operation on both objects and arrows, preserving the
structure: Ff:FX - FY whenf:X - Y, and

Fidx — id|:x
F(f-9)=Ff-Fg

For example, forgetful functor U : CMon - Set:
UM, Le€) =M
Uth: M, Ce) - M5CeH) =h:M - MY

Conversely, Free : Set -~ CMon generates the free commutative monoid (ie bags)
on a set of elements:

Free A = (Bag A, L 1) 1
Free (f :A - B)=mapf.:Bag A - BagB

6. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C,D, and functors L:D - Cand R:C - D, adjunction

£\
C [D means —EIEIC(L X, Y) CDIX,RY) : EI
N A
R
The functional programmer’s favourite example is given by currying:
-xP
VRN
Set [Set with curry : Set(X < P,Y) [Sat(X,Y"):curry®
N A7

)"

hence definitions and properties of apply = uncurry idye : YP <P Y.

Relational Algebra by Way of Adjunctions

7. Products and coproducts

with

fork :Set?(AA, (B,C)) [Sat(A,BxC) :fork®
junc® :Set(A+B,C) [Sat’((A,B),AC):junc

hence

dup = fork idaa :Set(A,AxA)
(fst,snd) = fork” idgxc : Set?(A(B, C), (B, C))

give tupling and projection. Dually for sums and injections.
And more generally for any arity—even zero.

8. Free commutative monoids

Free/forgetful adjunction:

Free

VR
CMon [1 Set with IZICMon(Free A, (M, L €))
~__ 7 [Sat(A,U (M, [€)) =10

U

Unit and counit:

single A = Hdrree oA LJA - U (Free A)
(M) = dyCl1l :Free(UM) - M --for M= (M, [¢€)

whence, for h:Free A - Mandf: A - UM =M,
h=(M)-Freef LI Wh-singleA=f

ie 1-to-1 correspondence between (i) homomorphisms from the
free commutative monoid (bags) and (ii) their behaviour on singletons.

9. Aggregation

Aggregations are bag homomorphisms:

aggregation | monoid action on singletons
count (N,0,+) lal 11
sum (R,0,+) lal Cal
max (Z 1 {Foo}, —co,max) laf [al
all (B, True, D1 lal Cal

Projection 11; = Bag i is a homomorphism—just functorial action.
Selection g, Is also a homomorphism, to bags, with action

guard: (A - B) - Bag A - Bag A

guard pa=ifpathen]afelse [1

Projection and selection laws follow from homomorphism laws
(and from laws of coproducts, since B=1 + 1).

10. Monads

Finite bags form a monad (Bag, union, single) with

Bag =U- Free
union : Bag (Bag A) - Bag A
single : A - Bag A

which justifies the use of comprehension notation
fab [@l- x,b -« gaf

and its equational properties.
In fact, any adjunction L [Rlyields a monad (T, 4, n) on D, where
T =R-L

HA=ROAALO:T(TA) - TA
NA=0Dda[1 :A-TA

11. Maps

Database indexes are essentially maps Map K V = VX, Maps (-)¥X from K form a
monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents follow from this adjunction, and from those for products
and coproducts:

Map OV [11

Map 1V V1

Map (K1 +Ky) V [Mhp K1 V x Map Ky V

Map (K1 xKy) V [Mbp K1 (Map K, V)

Map K 1 11

Map K (V1 xV>2) [Mhp K V1 x Map K V2 : merge

—ie merge is right-to-left half of the latter iso:

merge : Map K V1 xMap KV, - Map K (V1 X V>)

12. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

J

/\
Rel [1 Set where J embeds, and ER: A - SetB for R: A [Bl

~_ 7

E

Moreover, the correspondence remains valid for bags:
index :Bag (K xV) [Mbhp K (Bag V)
Together, index and merge give efficient relational joins:

X ¢ Lgyl= flatten (Map K cp (merge (groupBy f x, groupBy gy)))

groupBy :EqQ K M - K) - BagV - MapK (Bag V)
flatten :Map K (BagV) - BagV

expressible also via comprehensive comprehensions

13. FiIniteness

A catch:
e being finite is important, for aggregations
e begin a monad is important, for comprehensions
e finite bags form a monad (as above)

e maps form a monad, but finite maps do not: the unit
na=(Ak - a):A- MapKA
generally yields an infinite map.

How to reconcile finiteness of maps with being a monad?

14. Graded monads

Grading (indexing, parametrizing) a monad by a monoid:
an indexed family of endofunctors that collectively behave like a monad.

For monoid M = (M, L €), the M-graded monad (T, u,n) is
a family T, of endofunctors indexed by m: M, with

nNX:X - T X

satisfying the usual laws. These too arise from adjunctions
(even though T itself is not an endofunctor!).
For example, think of finite vectors, indexed by length.

We use the monoid (K [+, [I)lof finite sequences of finite key types K.

Relational Algebra by Way of Adjunctions

15. Query transformations

These can now all be shown by equational reasoning:

TTj - TTj =TT --Wheni-j:i

Op - T =TI - Op --whenp-1=p

(M) - Bag f - 1 = (M) -Bag (f - 1)

(M) -Bag f - op = (M) - Bag (Aa - iIf pathenf aelse¢)

x ¢ Cgyl = Bag swap (y ¢ L)

(Xt Lg¥) (g-sndy Lnzl=Bag assoc (Xt L¢g-iht) (Y g LrZ))

Tlixj (X5 CgY) =1 Xxfolgotjy --whenf a=gb [T AN a) =g"{j b)
Op (X1 Lgy) =ogXxfLgaly --whenp(a,b)=qalrb

for monoid M = (M, L, €).

16

16. Summary

e monad comprehensions for database queries

e structure arising from adjunctions

e eguivalences from universal properties

e fitting In relational joins, via indexing and graded monads
e calculating query transformations

Paper to appear at ICFP 2018.

Thanks to EPSRC Unifying Theories of Generic Programming for funding.

transformations in
relational algebra
come adjunctions

