
#if THRIFTY
 save! cake
#elif HUNGRY
 eat! cake
#endif

 1

Toward a variational
programming language

Eric Walkingshaw
Oregon State University

What is variational programming?

 2

2 * 3 + A⟨4,5⟩

2 * 3 + 4 2 * 3 + 5

2 * 3 + A⟨4,5⟩
↦ 6 + A⟨4,5⟩
↦ A⟨6+4,6+5⟩
↦ A⟨10,6+5⟩
↦ A⟨10,11⟩

“choice”
2 * 3 +
#if A
 4
#else
 5
#endif

Computing with explicit variation in code and data

Variational programming by example

 3

A⟨2,3⟩ + A⟨10,20⟩
↦ A⟨12,23⟩

A⟨True,3⟩
: A⟨Bool,Int⟩

A⟨succ,even⟩
: A⟨Int -> Int,Int -> Bool⟩
≡ Int -> A⟨Int,Bool⟩

“choice type”

Variational programming by example

 4

vmax (A⟨2,3⟩ + B⟨10,20⟩)
↦ 23 @ [A.R,B.R]

vsum (A⟨2,3⟩ + B⟨10,20⟩)
↦ 70

A⟨2,3⟩ + B⟨10,20⟩
↦ A⟨B⟨12,22⟩,B⟨13,23⟩⟩

Application: validating highly configurable systems

 5

class Buffer {
 int buff = 0;
#ifdef UndoOne
 int back = 0;
#endif
#ifdef UndoMany
 Stack stack =
 new Stack();
#endif
 int get() {
 return buff;
 }
 void set(int x) {
#ifdef Logging
 log(buff+"->"+x);
#endif
#ifdef UndoOne
 back = buff;
#endif
#ifdef UndoMany
 stack.push(buff);
#endif
 buff = x;
 }

#ifdef UndoOne
 void undo() {
#ifdef Logging
 log(back+"<-"+bug);
#endif
 buff = back;
 }
#endif
#ifdef UndoMany
 void undo() {
#ifdef Logging
 log(stack.peek()
 +"<-"+buff);
#endif
 buff =
 stack.pop();
 }
#endif
}

class Buffer {
 int buff = 0;
 int get() {
 return buff;
 }
 void set(int x) {
 buff = x;
 }
}

1. configure 2. validate

program  
analysis

✘
✓

3. deploy

This process finds errors too late!

Too many configs to check them all

(static variation)

 6

class Buffer {
 int buff = 0;
#ifdef UndoOne
 int back = 0;
#endif
#ifdef UndoMany
 Stack stack =
 new Stack();
#endif
 int get() {
 return buff;
 }
 void set(int x) {
#ifdef Logging
 log(buff+"->"+x);
#endif
#ifdef UndoOne
 back = buff;
#endif
#ifdef UndoMany
 stack.push(buff);
#endif
 buff = x;
 }

#ifdef UndoOne
 void undo() {
#ifdef Logging
 log(back+"<-"+bug);
#endif
 buff = back;
 }
#endif
#ifdef UndoMany
 void undo() {
#ifdef Logging
 log(stack.peek()
 +"<-"+buff);
#endif
 buff =
 stack.pop();
 }
#endif
}

class Buffer {
 int buff = 0;
 int get() {
 return buff;
 }
 void set(int x) {
 buff = x;
 }
}

program  
analysis

✘
✓

variational  
analysis

✓
✘✓
✓
✓

variational programming inside!

Application: validating highly configurable systems

Variation in input is
preserved in output

ICFP 2012, TOPLAS 2014

Application: information-flow security

 7

def test(secret):
 result = 5
 ok = check(secret)
 if ok then:
 result = result * 2
 return result

secret = P⟨"sesame",⊥⟩
result = 5
ok = P⟨true,⊥⟩

result = P⟨10,5⟩

secret = P⟨"wrong",⊥⟩
result = 5
ok = P⟨false,⊥⟩

result = 5

if you can’t see the secret you
better not learn anything here!

protected by policy P

non-interference
≈

variation preservation

“faceted execution”

Application: speculative program analyses

 8

Idea: use variation to explore hypothetical scenarios

Speculative analysis for error location

 9

• Occurs check: cannot construct the infinite type: a ~ [a]
 Expected type: [[a]]
 Actual type: [a]
• In the second argument of ‘(==)’, namely ‘xs’
 In the expression: reverse xs == xs

fold f z [] = [z]
fold f z (h:t) = fold f (f z h) t

flip f x y = f y x

reverse = fold (flip (:)) []

palindrome xs = reverse xs == xs

error is in base case of fold  
… but fold type checks!

use of fold also type checks!

error finally detected

Speculative analysis for error location

 10

Problem: locating the cause of a type error is hard

• type inference commits too early

• a successfully inferred type could be wrong!

e : T e : d⟨T,a⟩ d a

1. Error-tolerant variational type inference  
 where for every subexpression

& are fresh

2. Search output variational type for

• non-error type

• as few right selections as possibleChen and Erwig 
POPL 2014, JFP 2018

Solution:

“counterfactual typing”

Speculative analysis for migrating gradual types

 11

def f(mode:bool, x):
 if mode:
 return even(x)
 else:
 return not(x)

Gradual typing  
mix static and dynamic types  
in the same program

Migration challenges:

• mutually exclusive annotations

• local type-safety maxima

• potential for extreme performance degradation

(adding/removing annotations)

Speculative analysis for migrating gradual types

 12

Problem: migrating gradual types is perilous  
and exploration by trial-and-error is infeasible

1. Every (unannotated) parameter is initially  
 & are fresh is the dynamic type

d⟨a,?⟩
d a ?

POPL 2018, ICFP 2018

2. Variational gradual type inference + cost analysis
output = summary of all possible migrations

3. Filter/search variational output
most static = fewest right selections  
cheapest = lowest cost

Solution:

prototype in
Reticulated Python!

 13

Share as much as possible
• split late and join early
• clever data structures

Pick the right domains

Challenge #1:
potential explosion of variation space

Challenge #2: variation is highly cross-cutting

 14

It’s irritating
and it gets...
everywhere

Variation in structured data

… need variational data structures

A⟨[1,2,3],[1,2,4,5]⟩
≡ [1,2,A⟨3,4⟩,A⟨5,_⟩] ??

Application level and language level

Challenge #3: how to handle external effects?

 15

runQuery $
 select `from` dosing `restrict`
 Fluarix⟨volume > 500,
 mass > Albendazole⟨1000,2000⟩⟩

countdown >>
 Simulator⟨
 print "Phew.",
 launchMissiles⟩

writeFile "shopping.txt"
 Robot⟨"batteries","bananas"⟩

print (Verbose⟨show,summary⟩ data)

Why a variational programming language?

 16

Goals:

• hard to do efficiently at library level

• advance and promote variational programming
as a broadly applicable strategy

• make what we know practically usable by others

• tackle the unsolved challenges (e.g. effects)

Effects + variation

 17

Can create generic “variation aware” interfaces to some effects

• lots of work, not always possible

• some configurations will need something special anyway

Idea: give the programmer the tools to deal with this
via algebraic effects and handlers

prototype in Eff!

Generic
variational file handler

 18

vFileHandler = handler
 read! file k ->
 k (fromIfDef (get! vctx) file)
 write! file str k ->
 toIfDef (get! vctx) file str; k ()

write! "shopping.txt"
 Robot⟨"batteries", "bananas"⟩

Robot⟨write! "todo.txt" "revolution", ()⟩
#if Robot
batteries
#else
bananas
#endif
shopping.txt

#if Robot
revolution
#endif
todo.txt

> "buy " ++ read! "shopping.txt"
Robot⟨"buy batteries", "buy bananas"⟩

> Robot⟨"robowax", read! "shopping.txt"⟩
Robot⟨"robowax", "bananas"⟩

Specialized variational file handler

 19

vEncryptedFileHandler = handler

 read! f k ->
 Encrypt⟨k (decrypt (get! key) (read! f)),
 read! f k⟩

 write! f s k ->
 Encrypt⟨k (encrypt (get! key) (write! f l)),
 write! f l k⟩

Toward a variational programming language

 20

Planned features:

• choices + variation-preserving typing and execution

• variational algebraic data types

• variant querying and aggregation

• reify / reflect on variational data

• extensible effect system

