#1f THRIFTY
save! cake

#elif HUNGRY
eat! cake

#endif

Toward a variational
/«‘w % | programming language

‘f\ v

= |Why don’t we have both?

.

Eric Walkingshaw
Oregon State University

What is variational programming?

Computing with explicit variation in code and data

HN
i =
B =h ¥
= W

#else

#endif

““choice”

2 x 3 + A(4,5)

2 xx 3 + 4

2 x 3 +5

2 x 3 + A(4,5)

» 6 + A(4,5)
» A{(6+4,6+5)
» A(10,6+5)
» A(10,11)

Variational programming by example

A(2,3) + A(10,20)
» A{(1l2,23)

A{(True, 3)
: A(Bool,Int) “choice type”

A(succ,even)
: A(Int —> Int,Int -> Bool)
= Int -> A{(Int,Bool)

Variational programming by example

A(2,3) + B(10,20)
» A{(B(12,22),B(13,23))

vsum (A{(2,3) + B{(10,20))
» 70

vmax (A{(2,3) + B{(10,20))
» 23 @ [A.R,B.R]

Application: validating highly configura

static variation

class Buffer {
int buff = 0;
#ifdef UndoOne
int back = 0;
#endif
#ifdef UndoMany
Stack stack =
new Stack();
#endif
int get() {
return buff;
}
void set(int x) {
#ifdef Logging

#endif

#ifdef UndoOne
back = buff;

#endif

#ifdef UndoMany

#endif
buff = x;
}

log (buff+"->"+x) ;

stack.push (buff) ;

#ifdef UndoOne
void undo () {
#ifdef Logging
log (back+"<-"+bug) ;
#fendif
buff = back;
}
#fendif
#ifdef UndoMany
void undo() {
#ifdef Logging
log(stack.peek ()
+"<-"+buff) ;
#fendif
buff =
stack.pop() ;
}
#endif
}

|. configure

ko 3

class Buffer {

int buff = 0;

int get() {
return buff;

}

void set (int x) {
buff = x;

}

2. validate

program
analysis

ble systems

Application: validating highly configurable systems

class Buffer {
int buff = 0;
int get() {

return buff; p rog ram
analysis

}

void set (int x) {
buff = x;
}

class Buffer {
int buff = 0;
#ifdef UndoOne
int back = 0;
#endif
#ifdef UndoMany
Stack stack =
new Stack() ;
#endif }
int get() { #endif
} return buff; #ifdef UndoMany

. . void undo
void set(int x) { #ifdef Loggiig{
#ifdef Logging
log (buff+"->"+x) ; log(stack.peek ()

#ifdef UndoOne
void undo () {
#ifdef Logging
log (back+"<-"+bug) ;
#endif
buff = back;

variational Variation in input is

#endif +"<_"+buff) . . |
i #endif S I S I
#ifdef UndoOne
buff =

back = buff;
g , meeck-pep() al la)’
#ifdef UndoMany _

stack.push (buff) ; fendlf
#endif

buff = x; r":seln‘ 'E

}

“-variational programming inside!
ICFP 2012, TOPLAS 2014

Application: information-flow security

def test(secret):
result = 5
ok = check(secret)
1f ok then:
result = result x 2
return result

— protected by policy P

secret = P("sesame", 1)
result = 5
ok = P(true, 1)

result = P(10,5)

_If you can't see the secret you
“better not learn anything here!

secret = P("wrong", 1)
result =5
ok = P(false, 1)

result = 5

hon-interference

~
_~

variation preservation

Application: speculative program analyses

ldea: use variation to explore hypothetical scenarios

WHAT IF MY PROGRAM 3

.
-

0
,.
WAS.DIFFERENT?
1) weuencliator.net

Speculative analysis for error location

palindrome xs

reverse = fold (flip (:)) []

fold f z [] = [z] error is in base case of fold
fold f z (h:t) = fold f (f z h) t| ... but fold type checks!
flip f x y = f y X

use of fold also type checks!

reverse Xs == XS error finally detected

e Occurs check: cannot construct the infinite type: a ~ [a]
Expected type: [[a]ll
Actual type:
e In the second argument of ‘(==)’, namely ‘xs’
In the expression: reverse Xs == XS

[a]

Speculative analysis for error location

Problem: locating the cause of a type error is hard

* type inference commits too early

* a successfully inferred type could be wrong!

Solution:
WHAT IF MY PROGRAM @

| N .
WAS DIFFERENT2

1Y

1N

or.net

Chen and Erwig
POPL 2014, |FP 2018

|. Error-tolerant variational type inference
where for every subexpression

e : T e : d(T,a) d & a are fresh

2. Search output variational type for
® non-error type
* as few right selections as possible

10

Speculative analysis for migrating gradual types

def f(mode:bool, x):| Gradual typing
1T mode: mix static and dynamic types

return even(x :
olse (x) in the same program

return not(x)

Migration challenges: (adding/removing annotations)
e mutually exclusive annotations
® |local type-safety maxima

e potential for extreme performance degradation

Speculative analysis for migrating gradual types

Problem: migrating gradual types is perilous
and exploration by trial-and-error is infeasible

|. Every (unannotated) parameter is initially d{a, ?)

Solution: d &a are fresh ? is the dynamic type
WHAT IF MY PROGRAM

2. Variational gradual type inference + cost analysis
output = summary of all possible migrations

3. Filter/search variational output

most static = fewest right selections
cheapest = lowest cost

prototype in

j r
POPL 2018, ICFP 2018 Reticulated Python.

12

e
'-’. .
23

=
)

2 N ' 3 . X & ’ - - > . - - . » . . P % . -
P Y38 . . ' : " R N - : LRI “ * ¢ . : he o SRR . ” .
. - . . ’ - ™ . .. - 4
- ’ - . N . 4 < o . - " - - A .
. -t . . M . ar . .
. 4 .‘ L - L ot 2 3 a = - .) - p 4 3
. va's . . . - s
L4 . . . ° . . X y -) ..
. . y i ~ et e Q. ; ’ ’ . . RS .
™ » . " - . ’ = b 5 '
. L . ° - a) a =
sl & ° R :) 3 | e : Sk
' a oy » ® °
% - ’ . ’ s .
.

...
Share as much as posslble
| .' . :‘.9:'

Challenge #2: variation is highly cross-cutting

It’s irritating
and it gets...
everywhere

Application level and language level

A([11213]I [1121415])
= [1,2,A(3,4),A(5,_)] ?7

... Need variational data structures

Variation in structured data -

14

{

Chalienge.#B: how to handle external effects!? //“

5 ¢ ; o
. R ’
L ®
.. .
- s 4 L

countdown >> lees N [writeFile "shopping.txt"

| Simulator(e & 7 Robot (“batteries", "bananas")
print "Phew.", Eaadl < M Ty
launchMissiles)

N\

select from dosing restrict
Fluarix(volume > 500,
mass > Albendazole(1000,2000))

Why a variational programming language?

Goals:

* hard to do efficiently at library level

* advance and promote variational programming
as a broadly applicable strategy

* make what we know practically usable by others

o tackle the unsolved challenges (e.g. effects)

16

Effects + variation

Can create generic “variation aware” interfaces to some effects
e |lots of work, not always possible

e some configurations will need something special anyway

Idea: give the programmer the tools to deal with this
via algebraic effects and handlers

|7

Generic vFileHandler = handler

variational file handler

read! file k —>

k (fromIfDef (get! vctx) file)
write! file str k —

toIfDef (get! vctx) file str; k ()

write! "shopping.txt"
Robot("batteries", "bananas")

Robot{(write! "todo.txt" "revolution", ()

> "buy " ++ read! "shopping.txt"
Robot("buy batteries", "buy bananas")

> Robot("robowax", read! "shopping.txt")
Robot("robowax", "bananas")

#1f Robot
) batteries
#else

bananas
#endif

shopping. txt

#1f Robot
revolution
#endif

todo. txt

18

Specialized variational file handler

VEncryptedFileHandler = handler

read! f k —>
Encrypt(k (decrypt (get! key) (read! f)),

)

write! f s k —>
Encrypt(k (encrypt (get! key) (write! f 1)),
)

19

Toward a variational programming language

Planned features:

choices + variation-preserving typing and execution
variational algebraic data types

variant querying and aggregation

reify / reflect on variational data

extensible effect system

20

