LUND
UNIVERSITY

Congruences for Incremental Datatype Migration

Christoph Reichenbach (Lund U),
Evan Chang (CU Boulder),
Amer Diwan (Google)

Why Incremental Datatype Migration?

vector: a list — « vector

Why Incremental Datatype Migration?

vector: a list — « vector

(* module A *)

fun derivatives(f, depth) =
let val results : real list list = ...
in results
end

fun integrals(f, depth) =
let val results : real list list = ...
in results
end

Why Incremental Datatype Migration?

vector: a list — « vector

(* module A *)

fun derivatives(f, depth) =
let val results : real list list = ...
in results
end

fun integrals(f, depth) =
let val results : real list list = ...
in results
end

(* module AutoFit)

val deriv = A.derivatives (...)

fun get(d, x) =
List.nth(List.nth(deriv, d), x)

Why Incremental Datatype Migration?

vector: a list — « vector

(* module A *)

fun derivatives(f, depth) =
let val results : real list list
in vector (map vector results)
end

fun integrals(f, depth) =
let val results : real list list
in vector (map vector results)
end

(* module AutoFit)

val deriv = A.derivatives (...)

fun get(d, x) =
List.nth(List.nth(deriv, d), x)

Why Incremental Datatype Migration?

vector: a list — « vector

(* module A *)

fun derivatives(f, depth) =
let val results : real list list
in vector (map vector results)
end

fun integrals(f, depth) =
let val results : real list list
in vector (map vector results)
end

(* module AutoFit)

val deriv = A.derivatives (...)

fun get(d, x) =
Vector.get(Vector.get(deriv, d), x)

Why Incremental Datatype Migration?

vector: a list — « vector

(* module A *)
fun derivatives(f, depth) =

let val : ist list = ... Challenges:
i dveCtor (map vector results) m Redundancy / Custom abstractions

en
fun integrals(f, depth) =

let val ist list = ...
i@ vector (map vector results)
d

en

(* module AutoFit)

val deriv = A.derivatives (...)

fun get(d, x) =
Vector.get(Vector.get(deriv, d), x)

Why Incremental Datatype Migration?

vector: a list — « vector

(* module A *)

fun derivatives(f, depth) =
let val results : real list list
in vector (map vector results)
end

fun integrals(f, depth) =
let val results : real list list
in vector (map vector results)

Challenges:
m Redundancy / Custom abstractions

m Scope

end
)

(* module DrawDerivatives *)
fun plotAll(...) =
Plot.draw: real list — unit
Plot.draw (A.derivatives ...)

(* module AutoFit)

val deriv = A.derivatives (...)

fun get(d, x) =
Vector.get(Vector.get(deriv, d), x)

Why Incremental Datatype Migration?

vector: a list — « vector

(* module A *)
fun derivatives(f, depth) =

let val results : real list list = ... Challenges:
ind"eCtor (map vector results) m Redundancy / Custom abstractions
en
fun integrals(f, depth) = = Scope
let val results : real list list = ... m Understandability
in vector (map vector results)
end
(x Y %)

I

(* module DrawDerivatives *)
fun plotAll(...) (
un L) =
Plot.draw: real list — unit (x Plot *)
Plot.draw (A.derivatives ...) (x X %)

*
N

*
—

Why Incremental Datatype Migration?

vector: a list — « vector

User Control = Incremental Datatype Migration

Program Metamorphosis for SML

val k = 42
fun f(x) = x + k
fun g(y, k) = (

print y;
: fly - k)

Program Metamorphosis for SML

val k = 42 val k = 42

fun f(x) = x + k fun f(x) = x + k

fun g(y, k) = (fun g(y, k) = (
print y; print y;

)f(Y-k))(Y-k)+k

\/

Inline

Program Metamorphosis for SML

val k = 42 val k = 42
fun f(x) = x + k fun f(x) = x + k
fun g(y, k) = (fun g(y, k) = (
print y; print y;
f(y - k) (y-k) +k
))
\/
Inline

m Error: Name Capture

Program Metamorphosis for SML

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: f(y - k)

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: (y-k) +k

val k = 42
fun f(x) = x + k
fun g(y, k) = (
(y-k) +k

)

W

Inline

m Error: Name Capture

Remove

Program Metamorphosis for SML

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: f(y - k)

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: (y-k) +k

val k = 42
fun f(x) = x + k
fun g(y, k) = (
(y-k) +k

)

W

Inline

m Error: Name Capture

Remove

m Error: Side effect removed

Program Metamorphosis for SML

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: f(y - k)

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: (y-k) +k

val k = 42
fun f(x) = x + k
fun g(y, k) = (
(y-k) +k

)

val k = 42
fun f(x) = x + k
fun g(y, k2) = (

(y-k2) + k
)

W\/

Inline

m Error: Name Capture

Remove

m Error: Side effect removed

Rename

Program Metamorphosis for SML

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: f(y - k)

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: (y-k) +k

val k = 42 val k = 42

fun f(x) = x + k fun f(x) = x + k

fun g(y, k) = (fun g(y, k2) =
(y-k)+k (y-k2) + k

))

(

W\/

Inline

Remove

m Error: Side effect removed

Rename

Program Metamorphosis for SML

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: f(y - k)

val k = 42

fun f(x) = x + k

fun g(y, k) = (
print y;

: (y-k) +k

val k = 42 val k = 42

fun f(x) = x + k fun f(x) = x + k

fun g(y, k) = (fun g(y, k2) =
(y-k)+k (y-k2) + k

))

(

~_ T~ T~

Inline

m User confirmed: Side effect removed

Remove

Rename

Program Metamorphosis: Implementation

Program Metamorphosis: Implementation

Value Model

Effect Model

Program Metamorphosis: Implementation

Equality modulo
term rewriting

Value Model
Effect Model

Effect I\/Iodel

Algorithmic Optimisation in Program Metamorphosis

Algorithmic Optimisation in Program Metamorphosis

m Extend term rewriting with user-defined axioms

V = vector(L)
Vector.sub(V, i) = List.nth(L, i)

Algorithmic Optimisation in Program Metamorphosis

m Extend term rewriting with user-defined axioms

m Use congruences (s) to increase abstraction

vector(L) s L

Vel Visgly Wl
Vector.sub(V, i) = List.nth(L, /) Vector.concat[Vi, Vo] 8 L1@L,

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter

val / = [1, 2, 3]: int list

List.nth(¢, 1)
= expect £: int list

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter

val ¢ = vector [1, 2, 3]: int vector

List.nth(¢, 1)
= expect £: int list

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter

val ¢ = «(vector [1, 2, 3]): int vector

List.nth(¢, 1)
= expect £: int list

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter

m Rewrite with transformation obligation: <(x) = ‘the vector equivalent to the list x’

val ¢ = «(vector [1, 2, 3]): <i(int vector)

List.nth(¢, 1)
= expect £: int list

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter
m Rewrite with transformation obligation: <(x) = ‘the vector equivalent to the list x’

m Push obligation through type system

val ¢ = «(vector [1, 2, 3]): <i(int vector)

Type conflict
List.nth(¢, 1)

= expect £: int list

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter
m Rewrite with transformation obligation: <(x) = ‘the vector equivalent to the list x’

m Push obligation through type system

val ¢ = «(vector [1, 2, 3]): <i(int vector)

List.nth(¢, 1)
= expect £: int list

Splitting the Congruence

m Challenge: Can't put entire program into term rewriter
m Rewrite with transformation obligation: <(x) = ‘the vector equivalent to the list x’

m Push obligation through type system

val ¢ = «(vector [1, 2, 3]): <i(int vector)

Vector.sub(>/, 1)
= expect £: int vector

Splitting the Congruence

Challenge: Can’t put entire program into term rewriter
Rewrite with transformation obligation: <(x) = ‘the vector equivalent to the list x’

Push obligation through type system

Complementary obligations cancel out: >(<i(7)) = 7

val ¢ = <(vector [1, 2, 3]): <i(int vector)

Vector.sub(>/, 1)
= expect /: <(int vector)

| Typechecks!

Conclusions and WIP

m Congruences allow reasoning over datatype migration

m Incrementalise reasoning by pushing transformation obligations into type system
m Applicable to many transformation challenges

m List <+ Vector
m Replacing (stateful) hashmap implementations
m linear space to log space or quadratic space (requires preconditions)

m TODO:

m Improve accuracy for locations to transform using recent related work
m Suggest transformations

