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User Control = Incremental Datatype Migration
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Algorithmic Optimisation in Program Metamorphosis

m Extend term rewriting with user-defined axioms

m Use congruences (s) to increase abstraction

vector(L) s L

Vel Visgly Wl
Vector.sub(V, i) = List.nth(L, /) Vector.concat[ Vi, Vo] 8 L1@L,
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Splitting the Congruence

Challenge: Can’t put entire program into term rewriter
Rewrite with transformation obligation: <(x) = ‘the vector equivalent to the list x’

Push obligation through type system

Complementary obligations cancel out: >(<i(7)) = 7

val ¢ = <(vector [1, 2, 3]): <i(int vector)

Vector.sub(>/, 1)
= expect /: <(int vector)

| Typechecks!




Conclusions and WIP

m Congruences allow reasoning over datatype migration

m Incrementalise reasoning by pushing transformation obligations into type system
m Applicable to many transformation challenges

m List <+ Vector
m Replacing (stateful) hashmap implementations
m linear space to log space or quadratic space (requires preconditions)

m TODO:

m Improve accuracy for locations to transform using recent related work
m Suggest transformations



