Verified translation validation of static analyses

Sandrine Blazy
Univ. Rennes, CNRS IRISA, Inria

joint work with Gilles Barthe, Vincent Laporte, David Pichardie and Alix Trieu

IFIP WG 2.11 RABKE 2018F6H8H

How to check security properties of
implementations “?

program.c ViErEans at program point XX:
—> EEE—> (0 <x <3 Ap+— t[2%i+1] |/ No alarm!
analyzer / ‘

CompCert
compiler

‘

program.asm .
E securlt_y
analysis'

Cryptographic constant-time property :

* branching do not depend on secrets

* memory accesses do not depend on secrets

This talk

program.c \Verasco at program point XX.: /
SEUl ——> 0 <Xx<3Ap—t2%+1]

analyzer o |
7 Rp— -——Q

CompCert
compiler

program.asm O <rg< 3 N y
’ i

lightweight\proof effort

General and lightweight methodology for carrying the results of a
source analyzer down to lower-level representations

This talk

i . .
program.c VY High-level abstract interpreter :
static

analyzer * precise (e.g. precise points-to analysis)

CompCert
compiler

program.asm

lightweight\proof effort

CHEVC R | ow-level data-flow analysis :

* requires to manually rewrite programs
* lack of precision

 does not scale

Alternative solution (work in progress)

program.c improved : ’ ’
¥ \erasco , brogram.c Is constant-time }

static ——— - ————
analyzer |

CompCert direct proof
compiler ¥

pr°gram'asml and so is program. asm ?
EEERee— -—-—-—-

Brittle approach : it requires to

- instrument all the semantics of CompCert
- adapt and redo all the proofs

 define new proof principles

CompCert and Verasco

—J

LT
Sackground : the =
formally verified tools Q

CompCert methodology

We program the compiler inside Coq.

Definition compiler (S: program) := ... Compiler IS_anguage
emantics

We state its correctness w.r.t. a formal specification of the

language semantics.
Soundness Proof
Theorem compiler 1s correct :

v S C, compiler S = OK (C) » safe (S) »

«C behaves like S». Logical
Framework
(here Coq)
We interactively and mechanically prove this theorem
Proof. ...(* a few months later *) ... l
Qed ° parser.ml compiler.ml pprinter.ml

We extract an OCaml implementation of the compiler.

Extraction compiler.

Verification patterns
(for each compilation pass)

Verified transformation Verified translation validation
transformation transformation
— — C >®I —
validator
Proved once for all One proof per program to compile

- = formally verified
- = not verified

Verasco

We program the static analyzer inside Cogq.

Definition analyzer (p: program) := ... Static Analyzer Language
Semantics

We state its correctness w.r.t. a formal specification of the

language semantics.
Soundness Proof
Theorem analyzer 1s sound :

vV P, analyzer P = Yes -

Logical
safe(P).
() Framework
(here Coq)
We interactively and mechanically prove this theorem
Proof. ... (* a few months later *) ... l
Qed . parser.ml analyzer.ml pprinter.ml

We extract an OCaml implementation of the analyzer.

Extraction analyzer.

(General architecture of Verasco

;CompCertC)—) Clight j_) C#minor/—) S CompCert compilej

l

Alarms)(—— Abstract interpreter) control rowJ

Memory & value domain) statesJ
Z — Int)
numbers
Nonrel— Rel) Nonrel— Rel)
Convex Symbolic
polyhedra equalities | |
Integer congruences) Integer & F.P. intervals)

/

program.c Verasco
—> Il
analyzer

A lightweight methodology |
to correctly translate the CompCert B
. . compiler ightweight\proof
results of static analysis l effort
program.asm low-level

annotations ¢

———— R

11

Key ideas

* |nlining enforceable properties

e properties that can be enforced using runtime monitors
Inlining a monitor yields a defensive form (i.e. a program instrumented

with runtime checks)
Enforcing a program to follow a property amounts to checking that it is

safe.

: N int *x;
lnt X; Tan+ +T A1

;:;M§Z§;; ‘ d8sert/ { y != 0 };
=53 | l assegiyfx==t || x==1+1 || x==t+2);

e ——
|
00— ————————

* Relative safety: P1 is safe under the knowledge that P- is safe

P——

® An instance of relational verification

12

Methodology

_-7|

V! [II,h] i; - assert (Isv &&|v<h); i; *

~

*ﬁ— f \‘DcI))

4—
CompCert

pal safer([pa))

l.

’ f :
o=="
o i | Cosafer [«

—T <(I’> ;

- safer([p)(a))

13

Use case:

cryptographi

constant-tir

14

Secure cryptography ?

Lots of secure crypto algorithms were produced in the past decades:
AES, RSA, SHA1/2/3, ECDSA (used in Bitcoin).

Attacks against these algorithms were also published:

* Tromer, Osvik, Shamir, 2006: Attack against AES, recover the secret key
from Linux's encrypted partitions in 65ms.

* Yarom, Falkner, 2014: Attack against RSA in GhuPG 1.4.13. « On average,
the attack is able to recover 96.7% of the bits of the secret key by observing
a single signature or decryption round. »

* Benger, van de Pol, Smart, Yarom, 2014: Attack on ECDSA using the
secp256k1 curve « We demonstrate our analysis via experiments using the
curve secp256ki1 used in the Bitcoin protocol. In particular we show that
with as little as 200 signatures we are able to achieve a reasonable level of
success in recovering the secret key for a 256-bit curve. »

Timing attacks

e Secret data can have influence on running time of the program

e Attacker measures timing

e Attacker infers what is required to recover secret

Examples computes ab mod n, where b is a secret key in RSA
pseudo-code from Wikipedia
if (secret) function modular pow(base, exponent, modulus)
foo(); if modulus = 1 then return 0
else Assert :: (modulus - 1) * (modulus - 1) does not OVF base
bar(); result := 1 leaks how many bits
base := base mod modulus of exponent are 1
J— — while exponent > 0
if (exponent mod 2 == 1):
result := (result * base) mod modulus
exponent := exponent >> 1
base := (base * base) mod modulus

return result

1110000

R

Use case: cryptographic constant-time

Constant-time policy: the control flow and sequence of memory accesses of
a program do not depend on some of its inputs (tagged as secret).

Use of the points-to information from Verasco to keep track of security levels,
and exploit this information in an information-flow type system

e | eakage model: conditional branchings and memory accesses can leak
information

Ex.: Leakage (<o, if e then p1 else p2>) = o (€)

We were able to automatically prove that programs verify the constant-time

policy.
Benchmarks: mainly PolarSSL and NaCl cryptographic libraries

17

Conclusion

Approach to formally verify translation of static analysis results in a
formally verified compiler

e lightweight proof-effort

e reduces security to safety
e Improves a previous security analysis at pre-assembly level

Improve Verasco to perform a very precise taint analysis

® relies on a tainted semantics
® encouraging results on a representative benchmark

* main theorem: any safe program w.r.t. the tainted semantics is constant
time (paper proof)

18

Questions ?

19

References

- G. Barthe, S. Blazy, V. Laporte, D. Pichardie, A. Trieu. Verified translation
validation of static analyses. Computer Security Foundations Symposium
(CSF), 2017.

- S. Blazy, V. Laporte, D. Pichardie. An abstract memory functor for verified
C static analyzers. ICFP 2016.

J.H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie. A formally-verified
static analyzer. POPL 2015.

- G. Barthe, G.Bertate, J.D.Campo, C.Luna, D. Pichardie. System-level non-
interference for constant-time cryptography. Conference on Computer
and Communications Security (CCS), 2014.

- F. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security. 2000.

M. Dam, B. Jacobs, A. Lundblad, F. Piessens. Provably correct inline
monitoring for multithreaded Java-like programs. Journal of Computer
Security, 2010.

20

