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Cryptographic constant-time property :

* branching do not depend on secrets

* memory accesses do not depend on secrets



This talk
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General and lightweight methodology for carrying the results of a
source analyzer down to lower-level representations



This talk
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CHEVC R | ow-level data-flow analysis :

* requires to manually rewrite programs
* lack of precision

 does not scale



Alternative solution (work in progress)
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Brittle approach : it requires to

- instrument all the semantics of CompCert
- adapt and redo all the proofs

 define new proof principles



CompCert and Verasco
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CompCert methodology

We program the compiler inside Coq.

Definition compiler (S: program) := ... Compiler IS_anguage
emantics

We state its correctness w.r.t. a formal specification of the

language semantics.
Soundness Proof
Theorem compiler 1s correct :

v S C, compiler S = OK (C) » safe (S) »

«C behaves like S». Logical
Framework
(here Coq)
We interactively and mechanically prove this theorem
Proof. ...(* a few months later *) ... l
Qed ° parser.ml compiler.ml pprinter.ml

We extract an OCaml implementation of the compiler.

Extraction compiler.



Verification patterns
(for each compilation pass)

Verified transformation Verified translation validation
transformation transformation
— — C >®I —
validator
Proved once for all One proof per program to compile

- = formally verified
- = not verified



Verasco

We program the static analyzer inside Cogq.

Definition analyzer (p: program) := ... Static Analyzer Language
Semantics

We state its correctness w.r.t. a formal specification of the

language semantics.
Soundness Proof
Theorem analyzer 1s sound :

vV P, analyzer P = Yes -

Logical
safe(P).
() Framework
(here Coq)
We interactively and mechanically prove this theorem
Proof. ... (* a few months later *) ... l
Qed . parser.ml analyzer.ml pprinter.ml

We extract an OCaml implementation of the analyzer.

Extraction analyzer.




(General architecture of Verasco
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Key ideas

* |nlining enforceable properties

e properties that can be enforced using runtime monitors
Inlining a monitor yields a defensive form (i.e. a program instrumented

with runtime checks)
Enforcing a program to follow a property amounts to checking that it is

safe.

: N int *x;
lnt X; Tan+ +T A1

;:;M§Z§;; ‘ d8sert/ { y != 0 };
=53 | l assegiyfx==t || x==1+1 || x==t+2);
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|
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* Relative safety: P1 is safe under the knowledge that P- is safe

P——

® An instance of relational verification
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Methodology
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Use case:

cryptographi

constant-tir
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Secure cryptography ?

Lots of secure crypto algorithms were produced in the past decades:
AES, RSA, SHA1/2/3, ECDSA (used in Bitcoin).

Attacks against these algorithms were also published:

* Tromer, Osvik, Shamir, 2006: Attack against AES, recover the secret key
from Linux's encrypted partitions in 65ms.

* Yarom, Falkner, 2014: Attack against RSA in GhuPG 1.4.13. « On average,
the attack is able to recover 96.7% of the bits of the secret key by observing
a single signature or decryption round. »

* Benger, van de Pol, Smart, Yarom, 2014: Attack on ECDSA using the
secp256k1 curve « We demonstrate our analysis via experiments using the
curve secp256ki1 used in the Bitcoin protocol. In particular we show that
with as little as 200 signatures we are able to achieve a reasonable level of
success in recovering the secret key for a 256-bit curve. »



Timing attacks

e Secret data can have influence on running time of the program

e Attacker measures timing

e Attacker infers what is required to recover secret

Examples  computes ab mod n, where b is a secret key in RSA
pseudo-code from Wikipedia
if (secret) function modular pow(base, exponent, modulus)
foo(); if modulus = 1 then return 0
else Assert :: (modulus - 1) * (modulus - 1) does not OVF base
bar(); result := 1 leaks how many bits
base := base mod modulus of exponent are 1
J— — while exponent > 0
if (exponent mod 2 == 1):
result := (result * base) mod modulus
exponent := exponent >> 1
base := (base * base) mod modulus

return result

1110000

R



Use case: cryptographic constant-time

Constant-time policy: the control flow and sequence of memory accesses of
a program do not depend on some of its inputs (tagged as secret).

Use of the points-to information from Verasco to keep track of security levels,
and exploit this information in an information-flow type system

e | eakage model: conditional branchings and memory accesses can leak
information

Ex.: Leakage (<o, if e then p1 else p2>) = o (€)

We were able to automatically prove that programs verify the constant-time

policy.
Benchmarks: mainly PolarSSL and NaCl cryptographic libraries
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Conclusion

Approach to formally verify translation of static analysis results in a
formally verified compiler

e lightweight proof-effort

e reduces security to safety
e Improves a previous security analysis at pre-assembly level

Improve Verasco to perform a very precise taint analysis

® relies on a tainted semantics
® encouraging results on a representative benchmark

* main theorem: any safe program w.r.t. the tainted semantics is constant
time (paper proof)
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Questions ?
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