
Verified translation validation of static analyses
Sandrine Blazy

Univ. Rennes, CNRS IRISA, Inria

�1

joint work with Gilles Barthe, Vincent Laporte, David Pichardie and Alix Trieu

IFIP WG 2.11 京都大学 2018年6月8日

How to check security properties of
implementations ?

Cryptographic constant-time property :

• branching do not depend on secrets

• memory accesses do not depend on secrets

�2

program.c

program.asm

CompCert
compiler

security
analysis

at program point XX:

0 ≤ x ≤ 3 ∧ p ⟼ t[2*i+1]

…

Verasco
static

analyzer
No alarm !

This talk

�3

General and lightweight methodology for carrying the results of a
source analyzer down to lower-level representations

CompCert
compiler

Verasco
static

analyzer

program.asm

program.c

0 ≤ r6 ≤ 3 ∧ r1 ⟼ r2

…

lightweight proof effort

at program point XX:

0 ≤ x ≤ 3 ∧ p ⟼ t[2*i+1]

…

This talk

�4

CompCert
compiler

Verasco
static

analyzer

program.asm

program.c

simple
constant-time

analysis Low-level data-flow analysis :

• requires to manually rewrite programs

• lack of precision

• does not scale

High-level abstract interpreter :

• precise (e.g. precise points-to analysis)

lightweight proof effort

Alternative solution (work in progress)

�5

CompCert
compiler

program.asm

program.c

direct proof

improved
Verasco

static
analyzer

program.c is constant-time

and so is program.asm

Brittle approach : it requires to

• instrument all the semantics of CompCert

• adapt and redo all the proofs

• define new proof principles

Background : the
formally verified tools
CompCert and Verasco

�6

CompCert methodology

We program the compiler inside Coq.

Definition compiler (S: program) := ...

We state its correctness w.r.t. a formal specification of the
language semantics.

Theorem compiler_is_correct :
∀ S C, compiler S = OK (C) ! safe (S) !  
 «C behaves like S».

We interactively and mechanically prove this theorem

Proof. ...(* a few months later *) ...
Qed.

We extract an OCaml implementation of the compiler.

Extraction compiler.

 Logical
 Framework
(here Coq)

Compiler Language
Semantics

parser.ml pprinter.mlcompiler.ml

Soundness Proof

�7

Verification patterns
(for each compilation pass)

!8

Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified

Proved once for all One proof per program to compile

Verasco

We program the static analyzer inside Coq.

Definition analyzer (p: program) := ...

We state its correctness w.r.t. a formal specification of the
language semantics.

Theorem analyzer_is_sound :
 ∀ P, analyzer P = Yes !  
 safe(P).

We interactively and mechanically prove this theorem

Proof. ... (* a few months later *) ...
Qed.

We extract an OCaml implementation of the analyzer.

Extraction analyzer.

 Logical
 Framework
(here Coq)

Compiler Language
Semantics

parser.ml pprinter.ml

Soundness Proof

�9

Static Analyzer

analyzer.ml

numbers

General architecture of Verasco

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals

Nonrel→ Rel Nonrel→ Rel
Symbolic

equalities

Convex

polyhedra

CompCert compilerC#minorClightCompCert C ...

A lightweight methodology
to correctly translate the
results of static analysis

�11

CompCert
compiler

Verasco
static

analyzer

program.asm

program.c

low-level
annotations

…

lightweight proof  
effort

Key ideas

• Inlining enforceable properties

• properties that can be enforced using runtime monitors  
Inlining a monitor yields a defensive form (i.e. a program instrumented
with runtime checks) 
Enforcing a program to follow a property amounts to checking that it is
safe.

�12

int *x;
int t[3];
/* … */
y = *x;

int *x;
int t[3];
/* … */
assert (x==t || x==t+1 || x==t+2);
y = *x;

z = x/y; assert { y != 0 };
z = x/y;

• Relative safety: P1 is safe under the knowledge that P2 is safe

• An instance of relational verification

Methodology

�13

p
�

p�

[p]h�i
h�i

DefS

DefT

h·i

CosafeT

[p�][p]

[p] |=T h�i

safeT ([p])

safeS(p)

safeT ([p]h�i)

safeT ([p�])

safeS(p�)

Verasco Verasco

CompCertCompCert

v : [l,h] i; ⇾ assert (l≤v && v≤h); i;

Use case:
cryptographic
constant-time

�14

Secure cryptography ?

Lots of secure crypto algorithms were produced in the past decades: 
AES, RSA, SHA1/2/3, ECDSA (used in Bitcoin).

Attacks against these algorithms were also published:

• Tromer, Osvik, Shamir, 2006: Attack against AES, recover the secret key
from Linux's encrypted partitions in 65ms.

• Yarom, Falkner, 2014: Attack against RSA in GnuPG 1.4.13. « On average,
the attack is able to recover 96.7% of the bits of the secret key by observing
a single signature or decryption round. »

• Benger, van de Pol, Smart, Yarom, 2014: Attack on ECDSA using the
secp256k1 curve « We demonstrate our analysis via experiments using the
curve secp256k1 used in the Bitcoin protocol. In particular we show that
with as little as 200 signatures we are able to achieve a reasonable level of
success in recovering the secret key for a 256-bit curve. »

Timing attacks

Secret data can have influence on running time of the program

Attacker measures timing

Attacker infers what is required to recover secret

Examples

if (secret)
 foo();
else
 bar();

function modular_pow(base, exponent, modulus)
 if modulus = 1 then return 0
 Assert :: (modulus - 1) * (modulus - 1) does not OVF base
 result := 1
 base := base mod modulus
 while exponent > 0
 if (exponent mod 2 == 1):
 result := (result * base) mod modulus
 exponent := exponent >> 1
 base := (base * base) mod modulus
 return result

Computes ab mod n, where b is a secret key in RSA 
pseudo-code from Wikipedia

leaks how many bits
of exponent are 1

Use case: cryptographic constant-time

Constant-time policy: the control flow and sequence of memory accesses of
a program do not depend on some of its inputs (tagged as secret).

Use of the points-to information from Verasco to keep track of security levels,
and exploit this information in an information-flow type system

• Leakage model: conditional branchings and memory accesses can leak
information  
Ex.: Leakage (<σ, if e then p1 else p2>) = σ (e)

We were able to automatically prove that programs verify the constant-time
policy. 
Benchmarks: mainly PolarSSL and NaCl cryptographic libraries

�17

Conclusion

Approach to formally verify translation of static analysis results in a
formally verified compiler

lightweight proof-effort

reduces security to safety

improves a previous security analysis at pre-assembly level

Improve Verasco to perform a very precise taint analysis

• relies on a tainted semantics

• encouraging results on a representative benchmark

• main theorem: any safe program w.r.t. the tainted semantics is constant

time (paper proof)

�18

Questions ?

�19

References

• G. Barthe, S. Blazy, V. Laporte, D. Pichardie, A. Trieu. Verified translation
validation of static analyses. Computer Security Foundations Symposium
(CSF), 2017.

• S. Blazy, V. Laporte, D. Pichardie. An abstract memory functor for verified
C static analyzers. ICFP 2016.

• J.H. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie. A formally-verified
static analyzer. POPL 2015.

• G. Barthe, G.Bertate, J.D.Campo, C.Luna, D. Pichardie. System-level non-
interference for constant-time cryptography. Conference on Computer
and Communications Security (CCS), 2014.

• F. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security. 2000.

• M. Dam, B. Jacobs, A. Lundblad, F. Piessens. Provably correct inline
monitoring for multithreaded Java-like programs. Journal of Computer
Security, 2010.

�20

