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How to check security properties of 
implementations ?

Cryptographic constant-time property : 

• branching do not depend on secrets

• memory accesses do not depend on secrets
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0 ≤ x ≤ 3 ∧ p ⟼ t[2*i+1]
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This talk
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General and lightweight methodology for carrying the results of a 
source analyzer down to lower-level representations

CompCert 
compiler

Verasco 
static 

analyzer

program.asm

program.c

0 ≤ r6 ≤ 3 ∧ r1 ⟼ r2


…

lightweight proof effort

at program point XX: 

0 ≤ x ≤ 3 ∧ p ⟼ t[2*i+1]

…



This talk

�4

CompCert 
compiler

Verasco 
static 

analyzer

program.asm

program.c

simple 
constant-time 

analysis Low-level data-flow analysis : 

• requires to manually rewrite programs

• lack of precision

• does not scale

High-level abstract interpreter : 

• precise (e.g. precise points-to analysis)

lightweight proof effort



Alternative solution (work in progress)
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CompCert 
compiler

program.asm

program.c

direct proof

improved 
Verasco 

static 
analyzer

program.c is constant-time

and so is program.asm

Brittle approach : it requires to

• instrument all the semantics of CompCert

• adapt and redo all the proofs

• define new proof principles



Background : the 
formally verified tools 
CompCert and Verasco
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CompCert methodology

We program the compiler inside Coq.

Definition compiler (S: program) := ...

We state its correctness w.r.t. a formal specification of the 
language semantics.

Theorem compiler_is_correct : 
∀ S C, compiler S = OK (C) ! safe (S) !  
      «C behaves like S».

We interactively and mechanically prove this theorem

Proof. ...(* a few months later *) ... 
Qed.

We extract an OCaml implementation of the compiler.

Extraction compiler.

 Logical 
 Framework 
(here Coq)

Compiler Language 
Semantics

parser.ml pprinter.mlcompiler.ml

Soundness Proof
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Verification patterns 
(for each compilation pass)
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Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified

Proved once for all One proof per program to compile



Verasco

We program the static analyzer inside Coq.

Definition analyzer (p: program) := ...

We state its correctness w.r.t. a formal specification of the 
language semantics.

Theorem analyzer_is_sound : 
 ∀ P, analyzer P = Yes !  
      safe(P).

We interactively and mechanically prove this theorem

Proof. ... (* a few months later *) ... 
Qed.

We extract an OCaml implementation of the analyzer.

Extraction analyzer.

 Logical 
 Framework 
(here Coq)

Compiler Language 
Semantics

parser.ml pprinter.ml

Soundness Proof
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Static Analyzer

analyzer.ml



numbers

General architecture of Verasco

statesMemory & value domain

control flowAbstract interpreterAlarms

Z → int

Integer congruences Integer & F.P. intervals 

Nonrel→ Rel Nonrel→ Rel
Symbolic 

equalities

Convex 

polyhedra

CompCert compilerC#minorClightCompCert C ...



A lightweight methodology 
to correctly translate the 
results of static analysis
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…

lightweight proof  
effort



Key ideas

• Inlining enforceable properties


• properties that can be enforced using runtime monitors  
Inlining a monitor yields a defensive form (i.e. a program instrumented 
with runtime checks) 
Enforcing a program to follow a property amounts to checking that it is 
safe.
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int *x;
int t[3];
/* … */
y = *x; 

int *x;
int t[3];
/* … */
assert (x==t || x==t+1 || x==t+2);
y = *x; 

z = x/y; assert  { y != 0 }; 
z = x/y;

• Relative safety: P1 is safe under the knowledge that P2 is safe


• An instance of relational verification



Methodology
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safeT ([p])

safeS(p)

safeT ([p]h�i)

safeT ([p�])

safeS(p�)

Verasco Verasco

CompCertCompCert

v : [l,h]    i;      ⇾       assert (l≤v && v≤h); i;



Use case: 
cryptographic 
constant-time
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Secure cryptography ?

Lots of secure crypto algorithms were produced in the past decades: 
AES, RSA, SHA1/2/3, ECDSA (used in Bitcoin).


Attacks against these algorithms were also published:


• Tromer, Osvik, Shamir, 2006: Attack against AES, recover the secret key 
from Linux's encrypted partitions in 65ms.


• Yarom, Falkner, 2014: Attack against RSA in GnuPG 1.4.13. « On average, 
the attack is able to recover 96.7% of the bits of the secret key by observing 
a single signature or decryption round. »


• Benger, van de Pol, Smart, Yarom, 2014: Attack on ECDSA using the 
secp256k1 curve « We demonstrate our analysis via experiments using the 
curve secp256k1 used in the Bitcoin protocol. In particular we show that 
with as little as 200 signatures we are able to achieve a reasonable level of 
success in recovering the secret key for a 256-bit curve. »



Timing attacks

Secret data can have influence on running time of the program

Attacker measures timing

Attacker infers what is required to recover secret


Examples


if (secret) 
  foo();
else 
  bar();

function modular_pow(base, exponent, modulus)
    if modulus = 1 then return 0
    Assert :: (modulus - 1) * (modulus - 1) does not OVF base
    result := 1
    base := base mod modulus
    while exponent > 0
        if (exponent mod 2 == 1):
           result := (result * base) mod modulus
        exponent := exponent >> 1
        base := (base * base) mod modulus
    return result

Computes ab mod n, where b is a secret key in RSA 
pseudo-code from Wikipedia

leaks how many bits 
of exponent are 1



Use case: cryptographic constant-time

Constant-time policy: the control flow and sequence of memory accesses of 
a program do not depend on some of its inputs (tagged as secret).


Use of the points-to information from Verasco to keep track of security levels, 
and exploit this information in an information-flow type system


• Leakage model: conditional branchings and memory accesses can leak 
information  
Ex.: Leakage (<σ, if e then p1 else p2>) = σ (e)


We were able to automatically prove that programs verify the constant-time 
policy. 
Benchmarks: mainly PolarSSL and NaCl cryptographic libraries
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Conclusion

Approach to formally verify translation of static analysis results in a 
formally verified compiler


lightweight proof-effort

reduces security to safety

improves a previous security analysis at pre-assembly level


Improve Verasco to perform a very precise taint analysis


• relies on a tainted semantics

• encouraging results on a representative benchmark

• main theorem: any safe program w.r.t. the tainted semantics is constant 

time (paper proof) 
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Questions ?
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