INSTITUT NATIONAL

JACQ
s | R INRIA &” UARD

Integrating concerns into a
software architecture

Anne-Francgoise Le Meur,

Olivier Barais, Laurence Duchien,
Jacquard INRIA project, LIFL, University of Lille, France

Julia Lawall
DIKU, University of Copenhagen, Denmark

Program Generation (WG 2.11), Dagstuhl, jan 2006

Context : Software Architectures

« Main concepts :

"...an abstract system specification consisting primarily of functional
components described in terms of their behaviors and interfaces
and component-component interconnections. "

C3 Hayes-Roth, 1994

I'4|- | |--|_'I for the ARPA DSSA program

« Benefits
— understanding (high level abstraction)
— construction (reuse, code generation)
— verification

— evolution (invariants)

Separation of concerns in software
architectures

Separation of concerns in software
architectures

Pkey
Repository

Al

Encrypt/ Encrypt/
Bank1 o O Decrypt & Decrypt E/ Bank2

Server Client

o

Transaction Transaction
m—m .
Manager Engine
The different concerns E
re tangled
are 9 Logging

|

=

.UARD
|

Integrating concerns incrementely
Bank1 \ / bank2 - Pkey

; Repository
Transaction
Transaction Trace

" 5 Engine m/u u\z
anager

Encrypt/ Encrypt/

O Decrypt o Decrypt
Server Client
0

Bank1 K / Bank2
il
Transaction
Manager

T Bank1 \j Bank?2
= z/

Trace

Transaction Trar]sactlon
Manager Engine

Pkey
\ Repository

A

Encrypt/ Encrypt/
Bankl =0 Decrypt [Decrypt Bank2
Server Client
Transaction Transaction
Manager Engine
)

Problems

» Difficult to build a software architecture in several steps
— Manual and tedious operation (crosscut)
— Error prone
— No verification between steps

— No unit to modularize a crosscutting concern and specify its integration

o TranSAT : A framework to specify the incremental integration
of concerns into a software architecture
- Definition of a new reusable entity modularizing
the concept
of concern : a software pattern
- Integration by transformations

Overview of TranSAT

Basis 1: Choice of a pattern
-+ architecture Ct "C: C2H Hcs
/7 \ ! Software architecture pattern

/ |

/ E AHHeH HcH
/ v
| 5 A - New plan

. \

| 7 2: Search of Matching

v

(Transformation rules]

[: \
matching L : : .
| join points | }% Join point mask
| join points i m | :
| I
I
I
I
I

\ 3: Spe_ci_alisaIion of Join point mask
Yy the join point mask selected —‘ |
\ ______———I————E————’/
N 4 : Weaving ! _
N y Weaver
, : Transformed software
iteration architecture

|

JACQ

.UARD
|

Software architecture pattern

|
.

Vil

T

J?Q . Basis software architecture

.UARD
|

New plan

Join point mask &:_:._:5
3)

Transformation
rules

O

AN

]

Software architecture pattern

A language to specify
transformations

* Defined from the join point mask and the new plan.

 Two kinds of rules:

— The introduction primitives (intra-component modifications)

Modify the specification of a component

 Structural modifications of a component => its behavioral modification
— Structural : operation and port addition
— Behavioral : flow of execution modification

 Introduction = (structural + behavioral) modifications

— The reconfiguration primitives (inter-component modifications)

|

=

.UARD
|

Modify the software architecture configuration

The transformation rules

Bank1

N

Bank2

Transaction
Manager

10

The transformation rules

Bank1 \ / Bank2

Transaction

Introduction of
operations related
to security, tracing,
atomicity concerns

Manager \

Bank1

Bank2

T

Transaction
Manager
|

11

The transformation rules

Bank1 \ / Bank2

Transaction

Manager
Pkey
\ Repository
Encrypt/ Encrypt/
Bank1 Decrypt Decrypt
Server Cllent
Introduction +

Transactlon m
Reconfiguration Manfger

Bank2

12

Introduction primitives

Port Operation
Operation Or = op in Pr
Create Port Pr in Cp
Operation Or;, = op replace Or,
Destroy Pr.destroy () N/A
Move N/A Or.move (Pr)
Cp: ComponentRef; Pr: PortRef; Or: OperationRef;

|

=

.UARD
|

op ::= Or | inverse(Or); N/A: Not applicable;

13

Reconfiguration primitives

Component Binding Composite
Binding Br Composite Cr
Create N/A
={Pr,, Pr,} Composite Cr, in Cr,
Destroy N/A Br.destroy () N/A
Move Cp.move (Cr) N/A Cr,.move (Cr,)

|

=

.UARD
|

Cp: ComponentRef; Cr: CompositeRef; Pr: PortRef;

Br: BindingRef; N/A: Not applicable;

14

Transformation coherence

« Static analyses of the pattern (once and for all)

— check of the coherence of the new plan, the join point mask and
the transformation rules

— verification of the impact of the transformation on the architecture
coherence with respect to its structure

« Dynamic analyses of the transformation (for each integration)

— verification of the structural compatibility of the modified or created
connexions

— verification of the behavioral compatibility of the new or modified
components assemblies

— verification of the impact of the transformation on the architecture

coherence with respect to its behavior 15

Transformation coherence

« Static analyses of the pattern (once and for all)

— check of the coherence of the new plan, the join point mask and
the transformation rules

— verification of the impact of the transformation on the architecture
coherence with respect to its structure

« Dynamic analyses of the transformation (for each integration)

— verification of the structural compatibility of the modified or created
connexions

— verification of the behavioral compatibility of the new or modified
components assemblies

— verification of the impact of the transformation on the architecture

coherence with respect to its behavior 16

Strutural impact

« Definition of the operational semantics of each primitive

Ex: Or.move (Pr)

Ore.J To = T3
plOr — (m1,(1), Pr— (ma, (), m +— (73, (3)], J. P+ Or.move (Pr)
— plOr v (Pr,(1), Pr— (mo (; J{0r}), 7 — (m3,(3 — {Or})], J —{Or}, P

« Containment analysis
— Each element must have some subelements
— Usefulness of each transformation rule

— Simulation of the transformations

= ;
.UARD

Transformation coherence

« Static analyses of the pattern (once and for all)

— check of the coherence of the new plan, the join point mask and
the transformation rules

— verification of the impact of the transformation on the architecture
coherence with respect to its structure

« Dynamic analyses of the transformation (for each integration)

— verification of the structural compatibility of the modified or created
connexions

— verification of the behavioral compatibility of the new or modified
components assemblies

— verification of the impact of the transformation on the architecture

coherence with respect to its behavior 18

Impact on the behavior

C

E

m-

E

* Are the behavioral contracts of A, B’, F compatible?

* |s the behavior of C’ bisimilar to the one of C?

|]

=

.UARD
|

19

Summary

« TranSAT : a model transformation approach

— The pattern : a new entity to modularize a concern in a software
architecture

— A transformation process specified and verified

* A model to specify constraint on the integration context of the pattern
» A specific language to specify the transformations

« "Write once integrate everywhere"

— Tools (static analyses + search -> DROOLS, transformation -> AGG)

« Perspectives

— Validation on industrial examples
— Generalization of the approach to target other ADLs

— — Semantic join point mask
sl

.UARD ‘e
|

20

