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Context : Software Architectures

« Main concepts :

"...an abstract system specification consisting primarily of functional
components described in terms of their behaviors and interfaces
and component-component interconnections. "

C3 Hayes-Roth, 1994

I'4|- | |--|_'I for the ARPA DSSA program

« Benefits
— understanding (high level abstraction)
— construction (reuse, code generation)
— verification

— evolution (invariants)




Separation of concerns in software
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Integrating concerns incrementely
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Problems

» Difficult to build a software architecture in several steps
— Manual and tedious operation (crosscut)
— Error prone
— No verification between steps

— No unit to modularize a crosscutting concern and specify its integration

o TranSAT : A framework to specify the incremental integration
of concerns into a software architecture
- Definition of a new reusable entity modularizing
the concept
of concern : a software pattern
- Integration by transformations




Overview of TranSAT
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Software architecture pattern
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A language to specify
transformations

* Defined from the join point mask and the new plan.

 Two kinds of rules:

— The introduction primitives (intra-component modifications)

Modify the specification of a component

 Structural modifications of a component => its behavioral modification
— Structural : operation and port addition
— Behavioral : flow of execution modification

 Introduction = (structural + behavioral) modifications

— The reconfiguration primitives (inter-component modifications)
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Modify the software architecture configuration




The transformation rules
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The transformation rules
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The transformation rules
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Introduction primitives

Port Operation
Operation Or = op in Pr
Create Port Pr in Cp
Operation Or;, = op replace Or,
Destroy Pr.destroy () N/A
Move N/A Or.move ( Pr)
Cp: ComponentRef; Pr: PortRef; Or: OperationRef;

|

=

.UARD
|

op ::= Or | inverse(Or); N/A: Not applicable;
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Reconfiguration primitives

Component Binding Composite
Binding Br Composite Cr
Create N/A
={Pr,, Pr,} Composite Cr, in Cr,
Destroy N/A Br.destroy () N/A
Move Cp.move (Cr) N/A Cr,.move (Cr,)
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Cp: ComponentRef; Cr: CompositeRef; Pr: PortRef;

Br: BindingRef; N/A: Not applicable;
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Transformation coherence

« Static analyses of the pattern (once and for all)

— check of the coherence of the new plan, the join point mask and
the transformation rules

— verification of the impact of the transformation on the architecture
coherence with respect to its structure

« Dynamic analyses of the transformation (for each integration)

— verification of the structural compatibility of the modified or created
connexions

— verification of the behavioral compatibility of the new or modified
components assemblies

— verification of the impact of the transformation on the architecture

coherence with respect to its behavior 15
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Strutural impact

« Definition of the operational semantics of each primitive

Ex: Or.move (Pr)

Ore.J To = T3
plOr — (m1,(1), Pr— (ma, (), m +— (73, (3)], J. P+ Or.move (Pr)
— plOr v (Pr,(1), Pr— (mo (; J{0r}), 7 — (m3,(3 — {Or})], J —{Or}, P

« Containment analysis
— Each element must have some subelements
— Usefulness of each transformation rule

— Simulation of the transformations
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Impact on the behavior
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* |s the behavior of C’ bisimilar to the one of C?
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Summary

« TranSAT : a model transformation approach

— The pattern : a new entity to modularize a concern in a software
architecture

— A transformation process specified and verified

* A model to specify constraint on the integration context of the pattern
» A specific language to specify the transformations

« "Write once integrate everywhere"

— Tools (static analyses + search -> DROOLS, transformation -> AGG)

« Perspectives

— Validation on industrial examples
— Generalization of the approach to target other ADLs

— — Semantic join point mask
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