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Feature-Oriented Software Development

* What is a feature?
U Increment in program functionality
1 Maps to a requirement
U Used to distinguish different programs
* |dea: represent features explicitly in design and code
U Each feature is encapsulated in a module
U A feature refines a (possibly empty) program

1A final program is composed of a series of features
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Feature Composition

* A simple model of feature composition ( e )

e

el =%

* The reality is more complicated

crosscutting
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Diverse Implementation Approaches

* Components

* Collaboration-based design

* Aspect-oriented programming
* (Generative programming

* Frames

=» What are the essence and the principles of features and
feature composition?
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Features are Trees

class Calc {
inte0=0,e1=0,e2=0; Calculator
void enter(int val) {

e2=e1; el =e0; el =val;
Calc

}
void clear() { %\

e0=el1=e2=0: e0 | el e2 top enter | | clear

}
String top() {

return String.valueOf(e0);

, 7
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Nodes Have Different Types

class Calc {
inte0=0,e1 =0, e2=0;
void enter(int val) {

}

void clear() {
e0=el1=e2=0;

}
String top() {

}
}

e2 =el;el =e0; el =val;

return String.valueOf(e0);

Calculator
Calc

i

y

e0| el | e2 top enter | | clear
field| [field | [field] (method) (method] (method
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Feature Composition is Tree Superimposition

package Calculator; package Calculator; package Calculator;
class Calc { class Calc { class Calc {
void add() { @ inte0 =0, el =0, e2 = 0: —_ inte0 =0, el =0, e2 = 0;
el =el1+e0;el =e2; void enter(int val) { void enter(int val) {
} e2=el1;el =e0; e0 =val; e2=el;el =e0;e0 =val;
} )4 } }
void clear() { void clear() {
efi=slal = e2' = e0=e1=e2=0;
feature: Add } }
String top() { String top() {
return String.valueOf(e0); return String.valueOf(e0);

} }
} V void add() {

e0=el +e0; el =e2;

_ }
Eeature. CalcBase Eeature: CaIcAdc§7 } V

Calculator ® Calculator —_ Calculator

i \

Calc Calc $
|

add e0| (el |e2| top | enter| |clear e0 |el| e2| | top  |enter| clear a%dd
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Feature Composition

* Recursive composition of the elements of a feature
U package e package — package (also for subpackages)
U class ® class — class (also for inner classes)
U Interface e interface — interface (also for inner interfaces)
U method * method — ?
U field e field — *?
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What About Fields and Methods?

* |f the same signature, there are two options:
1. Consider these compositions errors

2. Allow these compositions under some circumstances
— method * method — method if one method calls ori gi nal

— field e field — field if one field is abstract (no value assigned)
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Composition of Fields and Methods

class Calc {
int count = 0;
void enter(int val) {
original.enter(val);
count++;

}
}

Calc

class Calc {
int count;
void enter(int val) {
e2=el;el =e0; el =val;
}
}

/4

enter count

Calc

enter count

class Calc {
int count = 0;
void enter(int val) {
e2=¢el;el =e0; el =val;
count++;

}
: 4

Calc

enter count
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Paths and Introductions

* A feature is represented as a tree

* Each path in the tree, starting at the root, is called an

Introduction

[ = CalcBase

i CalcBase

Calc

.

count

[ = CalcBase.Calc.enter | enter

i [ = CalcBase.Calc

l L= CalcBase.Calc.count

* The hierarchical structure is encoded in the identifiers



IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 14

Introductions Encode Type Information

* Similarly to trees that represent features, an introduction
encodes type information in its identifier

CalcBase
Calc m

enter

| method

. t [ thod
i=CalcBase”™™™ . Calc™™ . enter™"’
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Features and Introductions

* A feature is a sum of introductions ( & )

F=CalcBase
® CalcBase.Calc

® CalcBase.Calc.e0

® CalcBase.Calc.el

® CalcBase.Calc.e2

® CalcBase.Calc.enter ,
according code

® CalcBase.Calc.clear \ /

® CalcBase.Calc.top

A compiler can \
evaluate this meta-
expression and
synthesize the

the set of summands is prefix-closed
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Introduction Sum

* Introduction sum over the set of introductions / forms an
idempotent hon-commutative monoid (/, ®)
1 Closure: composing introductions creates new introductions
1 Associativity: (a® b) @ c= a® (b ¢)
Uldentity: £F®@ a=a® &= a (&£ iIs the empty introduction)
U Non-commutativity: a® b# b ® a
U Distant idempotence:a® b® a=b @ a
— implies direct idempotence: a ® a = a
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Feature Composition is Introduction Sum

* Features are composed by introduction sum

F=i1€B...®im EB...EBiléB...EBim

N — N— —

g o

F F

0 n
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Semantics of Introduction Sum

* An introduction adds a new path to a tree
* Introductions are composed recursively
* Nodes with the same name and type are merged

1 Node wrapping

1 Subtree merging
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Applications of Introductions

* Node wrapping

1 Extend methods via overriding

0 Shield field accesses

U Declare new superclasses and interfaces
* Subtree merging

1 Add new packages, classes, interfaces, methods, fields
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Modifications

* Meta-level entities / meta-programming constructs
e Quantify over introductions

* Apply changes to a feature declaratively

* General form of modifications

1 Where does something happen?
U What happens?

U (What conditions must hold?)
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Modifications are Tree Walks

Calc

ao

top clear

enter

/ a C\

top clear

enter
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Where is a Modification Applied?

/

top

ao

a = *.enter

Calc

enter

clear
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Effects of Modifications

e Same as introduction sum
1 Add new children to a node

1 Wrapping of nodes
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So What is the Difference Between
Introductions and Modifications?

* Both can wrap nodes and add subtrees
* The difference between both is how this is expressed

1 Where does something happen?

U What happens?
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Operations on Modifications

* Modifications can be added (just like introductions)
G:AXA—-A
* Modifications can be composed like functions

O:AXA—DA

* Modifications can be applied to introductions

O:AXI—>]T
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Modification Sum

« D:AXADA

* Modifications consist of two parts

1 Where does something happen?
— The sum modifies the union of join points
1 What happens?
— Disjoint sets of join points
« Wrappers and subtree introductions can be merged to one set
— Overlapping join points
« Wrappers are nested based on the summation order

« Subtrees are merged based on the summation order
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Modification Application

e O:AXI—I

* Modifications are applied to sums of introductions

a@(i® j)=(aoi)®(a®j) with a€A and i, €Il
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Modification Composition

«c ©:AXA—DA

* Modification composition is successive modification
application

(a®b)Oi=aG®(b®i) with a,b€A and i€l
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Algebraic Properties of Modifications

* Modifications and their operations form a binoid (A, ®, ©)

U (A, ®) with @: A X A— Ais an idempotent monoid
— Associativity: (a@ b) @ c=a @ (b® c)
— ldentity: £® a=a ® = a (¢ is the empty modification)
— Non-commutativity:a® b# b @ a
— Distant idempotence:a® b® a=b @ a
 implies direct idempotence: a® a = a
U (A, ©) with ©: A X A— Ais a monoid
— Associativity: (a @ b) o c=a o (b ® ¢)
— ldentity: £®© a=a o = a (Z is the empty modification)

— Non-commutativity: a ©@ b# b © a
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Algebraic Properties of Features

(I, ®) is a semimodul over the binoid (A, &, ©)
a®(i® j)=(a0i)®(a®j) with a€A and i, €Il
(a®b)oi=(aoi)®(boi) with a,b€A and i€l

(a®b)®i=a®(b®i) with a,b€EA and i€l
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Two Interpretations of Modifications

* Local modifications (a) affect only introductions of the
features applied before

FoF oF ¢X=i ®a, 0(i,®a,0(i ®a 0X))

* Global modifications (g) may affect all introductions of a
series of features

FoF oF ¢X=(g. 0g 0g )O(i,®i,®i &X)
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Quarks

* A feature consists of introductions and local / global
modifications of different orders

* Composition of features is not obvious =» quarks
* A quark is a triple and represents a feature

q=(g.i,a)
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Quark Composition

<gl’ il’a1><g2’ i2’a2>:<gl®g2’il®<al®i2>’a1®a2>
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Conclusions



