An Algebra for Features and
Feature Composition

Sven Apel (University of Passau)
Christian Lengauer (University of Passau)
Don Batory (UT Austin)

Bernhard Moller (University of Augsburg)
Christian Kastner (University of Magdeburg)

Passau Technical Report MIP-0706 (on the Web)

Programming

_ !_® |UNIVERSITAT
%\ f;(u;‘ PASSAU

Group

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 2

Feature-Oriented Software Development

* What is a feature?
U Increment in program functionality
1 Maps to a requirement
U Used to distinguish different programs
* |dea: represent features explicitly in design and code
U Each feature is encapsulated in a module
U A feature refines a (possibly empty) program

1A final program is composed of a series of features

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 3

Feature Composition

* A simple model of feature composition (e)

e

el =%

* The reality is more complicated

crosscutting

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 4

Diverse Implementation Approaches

* Components

* Collaboration-based design

* Aspect-oriented programming
* (Generative programming

* Frames

=» What are the essence and the principles of features and
feature composition?

Our Approach

F_’rogramming
UNIVERSITAT
J% "’il;“(u;‘ PASSAU

GGGGG

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 6

Features are Trees

class Calc {
inte0=0,e1=0,e2=0; Calculator
void enter(int val) {

e2=e1; el =e0; el =val;
Calc

}
void clear() { %\

e0=el1=e2=0: e0 | el e2 top enter | | clear

}
String top() {

return String.valueOf(e0);

, 7

IFIP Working Group 2.11 Fifth Meeting

An Algebra for Features and Feature Composition — 7

Nodes Have Different Types

class Calc {
inte0=0,e1 =0, e2=0;
void enter(int val) {

}

void clear() {
e0=el1=e2=0;

}
String top() {

}
}

e2 =el;el =e0; el =val;

return String.valueOf(e0);

Calculator
Calc

i

y

e0| el | e2 top enter | | clear
field| [field | [field] (method) (method] (method

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 8

Feature Composition is Tree Superimposition

package Calculator; package Calculator; package Calculator;
class Calc { class Calc { class Calc {
void add() { @ inte0 =0, el =0, e2 = 0: —_ inte0 =0, el =0, e2 = 0;
el =el1+e0;el =e2; void enter(int val) { void enter(int val) {
} e2=el1;el =e0; e0 =val; e2=el;el =e0;e0 =val;
})4 } }
void clear() { void clear() {
efi=slal = e2' = e0=e1=e2=0;
feature: Add } }
String top() { String top() {
return String.valueOf(e0); return String.valueOf(e0);

} }
} V void add() {

e0=el +e0; el =e2;

_ }
Eeature. CalcBase Eeature: CaIcAdc§7 } V

Calculator ® Calculator —_ Calculator

i \

Calc Calc $
|

add e0| (el |e2| top | enter| |clear e0 |el| e2| | top |enter| clear a%dd

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 9

Feature Composition

* Recursive composition of the elements of a feature
U package e package — package (also for subpackages)
U class ® class — class (also for inner classes)
U Interface e interface — interface (also for inner interfaces)
U method * method — ?
U field e field — *?

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 10

What About Fields and Methods?

* |f the same signature, there are two options:
1. Consider these compositions errors

2. Allow these compositions under some circumstances
— method * method — method if one method calls ori gi nal

— field e field — field if one field is abstract (no value assigned)

IFIP Working Group 2.11 Fifth Meeting

An Algebra for Features and Feature Composition — 11

Composition of Fields and Methods

class Calc {
int count = 0;
void enter(int val) {
original.enter(val);
count++;

}
}

Calc

class Calc {
int count;
void enter(int val) {
e2=el;el =e0; el =val;
}
}

/4

enter count

Calc

enter count

class Calc {
int count = 0;
void enter(int val) {
e2=¢el;el =e0; el =val;
count++;

}
: 4

Calc

enter count

A Feature Algebra

F_’rogramming
UNIVERSITAT
%\ "’il;’}:‘ PASSAU

GGGGG

IFIP Working Group 2.11 Fifth Meeting

An Algebra for Features and Feature Composition — 13

Paths and Introductions

* A feature is represented as a tree

* Each path in the tree, starting at the root, is called an

Introduction

[= CalcBase

i CalcBase

Calc

.

count

[= CalcBase.Calc.enter | enter

i [= CalcBase.Calc

l L= CalcBase.Calc.count

* The hierarchical structure is encoded in the identifiers

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 14

Introductions Encode Type Information

* Similarly to trees that represent features, an introduction
encodes type information in its identifier

CalcBase
Calc m

enter

| method

. t [thod
i=CalcBase”™™™ . Calc™™ . enter™"’

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 15

Features and Introductions

* A feature is a sum of introductions (&)

F=CalcBase
® CalcBase.Calc

® CalcBase.Calc.e0

® CalcBase.Calc.el

® CalcBase.Calc.e2

® CalcBase.Calc.enter ,
according code

® CalcBase.Calc.clear \ /

® CalcBase.Calc.top

A compiler can \
evaluate this meta-
expression and
synthesize the

the set of summands is prefix-closed

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 16

Introduction Sum

* Introduction sum over the set of introductions / forms an
idempotent hon-commutative monoid (/, ®)
1 Closure: composing introductions creates new introductions
1 Associativity: (a® b) @ c= a® (b ¢)
Uldentity: £F®@ a=a® &= a (&£ iIs the empty introduction)
U Non-commutativity: a® b# b ® a
U Distant idempotence:a® b® a=b @ a
— implies direct idempotence: a ® a = a

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 17

Feature Composition is Introduction Sum

* Features are composed by introduction sum

F=i1€B...®im EB...EBiléB...EBim

N — N— —

g o

F F

0 n

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 18

Semantics of Introduction Sum

* An introduction adds a new path to a tree
* Introductions are composed recursively
* Nodes with the same name and type are merged

1 Node wrapping

1 Subtree merging

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 19

Applications of Introductions

* Node wrapping

1 Extend methods via overriding

0 Shield field accesses

U Declare new superclasses and interfaces
* Subtree merging

1 Add new packages, classes, interfaces, methods, fields

Modification —
A Further Element of a
Feature

Programming
_¥ JUNIVERSITAT
%a ""il;iu;‘ PASSAU

GGGGG

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 21

Modifications

* Meta-level entities / meta-programming constructs
e Quantify over introductions

* Apply changes to a feature declaratively

* General form of modifications

1 Where does something happen?
U What happens?

U (What conditions must hold?)

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 22

Modifications are Tree Walks

Calc

ao

top clear

enter

/ a C\

top clear

enter

IFIP Working Group 2.11 Fifth Meeting

An Algebra for Features and Feature Composition — 23

Where is a Modification Applied?

/

top

ao

a = *.enter

Calc

enter

clear

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 24

Effects of Modifications

e Same as introduction sum
1 Add new children to a node

1 Wrapping of nodes

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 25

So What is the Difference Between
Introductions and Modifications?

* Both can wrap nodes and add subtrees
* The difference between both is how this is expressed

1 Where does something happen?

U What happens?

Back to our
Feature Algebra

Programming
UNIVERSITAT
%\ "’il;’}] PASSAU

GGGGG

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 27

Operations on Modifications

* Modifications can be added (just like introductions)
G:AXA—-A
* Modifications can be composed like functions

O:AXA—DA

* Modifications can be applied to introductions

O:AXI—>]T

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 28

Modification Sum

« D:AXADA

* Modifications consist of two parts

1 Where does something happen?
— The sum modifies the union of join points
1 What happens?
— Disjoint sets of join points
« Wrappers and subtree introductions can be merged to one set
— Overlapping join points
« Wrappers are nested based on the summation order

« Subtrees are merged based on the summation order

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 29

Modification Application

e O:AXI—I

* Modifications are applied to sums of introductions

a@(i® j)=(aoi)®(a®j) with a€A and i, €Il

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 30

Modification Composition

«c ©:AXA—DA

* Modification composition is successive modification
application

(a®b)Oi=aG®(b®i) with a,b€A and i€l

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 31

Algebraic Properties of Modifications

* Modifications and their operations form a binoid (A, ®, ©)

U (A, ®) with @: A X A— Ais an idempotent monoid
— Associativity: (a@ b) @ c=a @ (b® c)
— ldentity: £® a=a ® = a (¢ is the empty modification)
— Non-commutativity:a® b# b @ a
— Distant idempotence:a® b® a=b @ a
 implies direct idempotence: a® a = a
U (A, ©) with ©: A X A— Ais a monoid
— Associativity: (a @ b) o c=a o (b ® ¢)
— ldentity: £®© a=a o = a (Z is the empty modification)

— Non-commutativity: a ©@ b# b © a

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 32

Algebraic Properties of Features

(I, ®) is a semimodul over the binoid (A, &, ©)
a®(i® j)=(a0i)®(a®j) with a€A and i, €Il
(a®b)oi=(aoi)®(boi) with a,b€A and i€l

(a®b)®i=a®(b®i) with a,b€EA and i€l

Quarks

Programming

_® |UNIVERSITAT
Jﬁ% ""'il;iu’:‘PASSAU

Group

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 34

Two Interpretations of Modifications

* Local modifications (a) affect only introductions of the
features applied before

FoF oF ¢X=i ®a, 0(i,®a,0(i ®a 0X))

* Global modifications (g) may affect all introductions of a
series of features

FoF oF ¢X=(g. 0g 0g)O(i,®i,®i &X)

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 35

Quarks

* A feature consists of introductions and local / global
modifications of different orders

* Composition of features is not obvious =» quarks
* A quark is a triple and represents a feature

q=(g.i,a)

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 36

Quark Composition

<gl’ il’a1><g2’ i2’a2>:<gl®g2’il®<al®i2>’a1®a2>

IFIP Working Group 2.11 Fifth Meeting An Algebra for Features and Feature Composition — 37

Conclusions

