
A lexically scoped type system for
multi-stage languages

Morten Rhiger
Roskilde University, Denmark

IFIP WG 2.11 meeting, June 25, 2012

This talk: λ[]

A type system for multi-stage calculus, which

is hygienic,

evaluates under λs,

supports run,

supports mutable state, and

defines one new type of code, with one
introduction rule and one elimination rule.

A lexically scoped type system for multi-stage languages 2 of 40

Approach

A context-aware code type.

(Records where code values are built.)

Lexically scoped terms and types.

(Controls where code values can be be
used.)

A lexically scoped type system for multi-stage languages 3 of 40

Outline

Monomorphic λ[]

Subtyping

Polymorphism

Standard examples and pitfalls

A lexically scoped type system for multi-stage languages 4 of 40

Syntax of λ[]

e ::= b | x | λx :t . e | e e | ↑e | ↓e︸ ︷︷ ︸
quasiquote&unquote or bracket&escape

t ::= B | t → t | [t]t | x | t , t | ∅︸ ︷︷ ︸
Sets of variables (a distinguished kind)

A lexically scoped type system for multi-stage languages 5 of 40

The code type of λ[]

[x1, · · · , xn] t type of code fragment

variables allowed free in code fragment

A lexically scoped type system for multi-stage languages 6 of 40

The code type of λ[]
An intuition

From Contextual Modal Types

[x1 : t1, · · · , xn : tn]t
Kim et al (2005), Rhiger (2005), Nanevski et al (2008)

to lexically scoped modal types:

λx1 : t1. · · ·λxn : tn .
...

[x1 : t1, · · · , xn : tn]t

A lexically scoped type system for multi-stage languages 7 of 40

The code type of λ[]
An intuition

From Contextual Modal Types

[x1 : t1, · · · , xn : tn]t
Kim et al (2005), Rhiger (2005), Nanevski et al (2008)

to lexically scoped modal types:

λx1 : t1. · · ·λxn : tn .
...

[x1 : t1, · · · , xn : tn]t

A lexically scoped type system for multi-stage languages 7 of 40

The code type of λ[]
An intuition

From Contextual Modal Types

[x1 : t1, · · · , xn : tn]t
Kim et al (2005), Rhiger (2005), Nanevski et al (2008)

to lexically scoped modal types:

λx1 : t1. · · ·λxn : tn .
...

[x1

: t1

, · · · , xn

: tn

]t

A lexically scoped type system for multi-stage languages 7 of 40

The code type of λ[]
Another intuition (yet unexplored)

[x1, · · · , xn︸ ︷︷ ︸
A classifier?

]t

Taha&Nielsen (2003)

A lexically scoped type system for multi-stage languages 8 of 40

Hygiene = Lexical scope
when evaluating under λs

Hygiene enforces abstractions:

let f (c) = ↑(λx . ↓c)

in ↑(λx . ↓(f (↑x))) 7−→ ↑(λx1. λx2. x1)

A lexically scoped type system for multi-stage languages 9 of 40

Enforcing lexical scope

In semantics (well known):

Variable convention (Barendregt): α-convert
(i.e., consistently rename) when necessary,
to make bound and free variable differ.

In type systems (λ[]):

Ditto

A lexically scoped type system for multi-stage languages 10 of 40

Contexts of λ[]

Several namespaces, one for each stage:

γ0, · · · , γn−1︸ ︷︷ ︸
past stages

, γn

present stage

; γn+1, · · · , γm︸ ︷︷ ︸
future stages

` · · ·

γ ∈ term-variables→fin types

Γ ::= γ, · · · , γ

A lexically scoped type system for multi-stage languages 11 of 40

Typing λ[] Γ ; Γ′ ` e : t

γ(x) = t

Γ, γ ; Γ′ ` x : t
(Var)

Γ, γ ; Γ′ ` t ′ :: ∗ Γ, γ + (x : t ′) ; Γ′ ` e : t

Γ, γ ; Γ′ ` λx :t ′. e : t ′ → t
(→ I)

Γ ; Γ′ ` e1 : t2 → t Γ ; Γ′ ` e2 : t2

Γ ; Γ′ ` e1 e2 : t
(→ E)

...
A lexically scoped type system for multi-stage languages 12 of 40

Typing λ[] Γ ; Γ′ ` e : t

...

Γ , γ ; Γ′ ` e : t

Γ ; γ , Γ′ ` ↑e : [γ]t
([] I)

Γ ; γ , Γ′ ` e : [γ]t

Γ , γ ; Γ′ ` ↓e : t
([] E)

where γ = dom(γ), as a type.

A lexically scoped type system for multi-stage languages 13 of 40

Enforcing lexical scope

↑(λx :t . ↓

Don’t throw away x : t here

(· · · ↑

. . . because we
need it again here.

x · · ·))

A lexically scoped type system for multi-stage languages 14 of 40

Kinding λ[] Γ ; Γ′ ` t :: κ

Kinding guarantees
that types are


lexically scoped,

correctly staged, and

well formed.

κ ::= ∗ | env

A lexically scoped type system for multi-stage languages 15 of 40

Kinding λ[] Γ ; Γ′ ` t :: κ

Kinding guarantees
that types are


lexically scoped,

correctly staged, and

well formed.

κ ::= ∗ | env

A lexically scoped type system for multi-stage languages 15 of 40

Kinding λ[] Γ ; Γ′ ` t :: κ

Γ ; Γ′ ` t1 :: ∗ Γ ; Γ′ ` t2 :: ∗

Γ ; Γ′ ` t1 → t2 :: ∗
(K→)

...

A lexically scoped type system for multi-stage languages 16 of 40

Kinding λ[] Γ ; Γ′ ` t :: κ

...

x ∈ dom(γ)

Γ, γ ; Γ′ ` x :: env
(K-Var)

Γ ; Γ′ ` t1 :: env Γ ; Γ′ ` t2 :: env

Γ ; Γ′ ` t1, t2 :: env
(K-Union)

Γ, γ ; Γ′ ` ∅ :: env
(K ∅)

...
A lexically scoped type system for multi-stage languages 17 of 40

Kinding λ[] Γ ; Γ′ ` t :: κ

...

Γ, γ ; Γ′ ` t1 :: env Γ, γ ; Γ′ ` t2 :: ∗

Γ ; γ, Γ′ ` [t1]t2 :: ∗
(K [])

A lexically scoped type system for multi-stage languages 18 of 40

Examples:
Scope extrusion

Avoiding scope extrusion (1)

let c : []int ref = ref (↑2)
in ↑(λx:int. · · · ↓(c := ↑x) · · ·)

is correctly rejected, since

c : []int ref

↑x : [x]int

A lexically scoped type system for multi-stage languages 20 of 40

Avoiding scope extrusion (2)

let c : [x]int ref = ref (↑2)
in ↑(λx:int. · · · ↓(c := ↑x) · · ·)

is correctly rejected, since

the first x is unbound.

A lexically scoped type system for multi-stage languages 21 of 40

Avoiding scope extrusion (3)

↑(λx:int.
↓(let c : [x]int ref = ref (↑2)

in ↑(λx:int. · · · ↓(c := ↑x) · · ·)))

is correctly rejected, since

c : [x]int ref

↑x : [x]int

and x and x are different variables.

A lexically scoped type system for multi-stage languages 22 of 40

Subtyping

Subtyping relation

...

t , t ′ ≤ t

t2 ≤ t1 t ′1 ≤ t ′2

[t1]t ′1 ≤ [t2]t ′2

([t]t ′ is contravariant in t .)

A lexically scoped type system for multi-stage languages 24 of 40

Subsumption

Γ ; Γ′ ` e : t2 t2 ≤ t1

Γ ; Γ′ ` e : t1
(t -≤)

Γ2 ; Γ′2 ` e : t Γ1 ; Γ′1 ≤ Γ2 ; Γ′2

Γ1 ; Γ′1 ` e : t
(Γ-≤)

A lexically scoped type system for multi-stage languages 25 of 40

Examples:
Subtyping

Subtyping example (1)

To type

let c : []int = ↑1 in ↑(λx:bool. ↓c)

coerce ↓c from []int to [x]int.

A lexically scoped type system for multi-stage languages 27 of 40

Subtyping example (2)

To type

↑(λx:bool. ↓(· · · run(↑2) · · ·))

remove the binding

x:bool

from the context at ↑2.

A lexically scoped type system for multi-stage languages 28 of 40

Passing open code across a lambda

↑(λx:int.
↓(let c : [x]int = ref (↑1)

in ↑(λy:bool.
· · · ↓(c := ↑x; · · ·))))

is accepted (and is safe).

A lexically scoped type system for multi-stage languages 29 of 40

Polymorphism

Polymorphic extension

e ::= · · · | ΛT :: κ. e | e [t]

t ::= · · · | T | ∀T :: κ. t

A lexically scoped type system for multi-stage languages 31 of 40

Extending contexts

One namespace of type variables:

∆

type variables

| γ0, · · · , γn−1︸ ︷︷ ︸
past stages

, γn

present stage

; γn+1, · · · , γm︸ ︷︷ ︸
future stages

` · · ·

∆ ∈ type-variables→fin kinds

A lexically scoped type system for multi-stage languages 32 of 40

Extending kinding ∆ | Γ ; Γ′ ` t :: κ

...

∆(T) = κ

∆ | Γ ; Γ′ ` T :: κ
(K-Tvar)

∆ + (T :: κ) | Γ ; Γ′ ` t :: ∗

∆ | Γ ; Γ′ ` ∀T :: κ. t :: ∗
(K ∀)

A lexically scoped type system for multi-stage languages 33 of 40

Extending typing ∆ | Γ ; Γ′ ` e : t

...

∆ + (T :: κ) | γ ; Γ′ ` e : t

∆ | γ
at stage 0 only (in this talk)

; Γ′ ` ΛT :: κ. e : ∀T :: κ. t
(∀ I)

∆ | Γ ; Γ′ ` e : ∀T ′ :: κ. t ∆ | Γ ; Γ′ ` t :: κ

∆ | Γ ; Γ′ ` e [t ′] : t {t ′/T ′}
(∀ E)

...
A lexically scoped type system for multi-stage languages 34 of 40

Extending typing ∆ | Γ ; Γ′ ` e : t

...

∆ | Γ , γ ; Γ′ ` e : t

∆ | Γ ; γ , Γ′ ` ↑e : [γ,∆env]t
([] I)

∆ | Γ ; γ , Γ′ ` e : [γ,∆env]t

∆ | Γ , γ ; Γ′ ` ↓e : t
([] E)

where ∆env = {T | ∆(T) = env}, as a type.

A lexically scoped type system for multi-stage languages 35 of 40

Type variables of kind env

(R :: env) is a “placeholder” for a set of term
variables:

∀R :: env. [x , y ,R]t instantiate
// [x , y , a , b]t

Any (R :: env) in scope must go into a code type:

λR :: env .

λx : [R]t .

type [R]t ′
↑(

· · · ↓x · · ·

)

A lexically scoped type system for multi-stage languages 36 of 40

Type variables of kind env

(R :: env) is a “placeholder” for a set of term
variables:

∀R :: env. [x , y ,R]t instantiate
// [x , y , a , b]t

Any (R :: env) in scope must go into a code type:

λR :: env .
λx : [R]t .

type [R]t ′
↑(

· · · ↓x · · ·

)

A lexically scoped type system for multi-stage languages 36 of 40

Type variables of kind env

(R :: env) is a “placeholder” for a set of term
variables:

∀R :: env. [x , y ,R]t instantiate
// [x , y , a , b]t

Any (R :: env) in scope must go into a code type:

λR :: env .
λx : [R]t .

type [R]t ′
↑(· · · ↓x · · ·)

A lexically scoped type system for multi-stage languages 36 of 40

Example:
Polymorphism

Staged eta expansion

eta = ΛT :: *. ΛU :: *. ΛR :: env.

λf : ∀S :: env. [R,S]T → [R,S]U.

↑(λx : T.

↓(f [x] (↑x)))

eta : ∀T :: *. ∀U :: *. ∀R :: env.

(∀S :: env. [R, S]T → [R, S]U) →
[R](T → U)

A lexically scoped type system for multi-stage languages 38 of 40

Using the staged eta expansion

powbta n [S::env] (x:[S]int) =

if n=0 then

↑1
else

↑(↓x * ↓(f (n-1) [S] x))

powgen n = eta [int] [int] [0] (powbta n)

A lexically scoped type system for multi-stage languages 39 of 40

Conclusions

λ[] demonstrates that
α-equivalence is compatible with context-aware
code types (see Taha&Nielsen, POPL’03),

code types are lightweight,

there is no need for additional technologies to
handle side effects (see λ�1) or run,

there is no need to restrict evaluation under
dynamic λs, e.g. by preventing it, or by replacing it
by substitution (see λ�, CMT),

standard type-system machinery (environments,
subtyping, polymorphism) are sufficient.

Thanks

A lexically scoped type system for multi-stage languages 40 of 40

Conclusions

λ[] demonstrates that
α-equivalence is compatible with context-aware
code types (see Taha&Nielsen, POPL’03),

code types are lightweight,

there is no need for additional technologies to
handle side effects (see λ�1) or run,

there is no need to restrict evaluation under
dynamic λs, e.g. by preventing it, or by replacing it
by substitution (see λ�, CMT),

standard type-system machinery (environments,
subtyping, polymorphism) are sufficient.

Thanks
A lexically scoped type system for multi-stage languages 40 of 40

