A lexically scoped type system for
multi-stage languages

Morten Rhiger

Roskilde University, Denmark

IFIP WG 2.11 meeting, June 25, 2012

A type system for multi-stage calculus, which
m is hygienic,
m evaluates under As,
m supports run,
m supports mutable state, and

m defines one new type of code, with one
introduction rule and one elimination rule.

m A context-aware code type.

(Records where code values are built.)

m Lexically scoped terms and types.

(Controls where code values can be be
used.)

Monomorphic A\H
Subtyping
Polymorphism

Standard examples and pitfalls

b | x| Ax:t.e| ee| te]| le
——

quasiquote&unquote or bracket&escape

B|t—>t|[t]t|3(\t,t|@

Sets of variables (a distinguished kind)

The code type of \!!

[x1,--+,Xp,] t—typeof code fragment

; variables allowed free in code fragment

A lexically scoped type system for multi-stage languages 6 of 40

From Contextual Modal Types

[X1 : tl,"' , Xn - tn]t

Kim et al (2005), Rhiger (2005), Nanevski et al (2008)

to lexically scoped modal types:

[X]_ ct, o X tn]t

From Contextual Modal Types

[X1 : tl,"' , Xn - tn]t

Kim et al (2005), Rhiger (2005), Nanevski et al (2008)
to lexically scoped modal types:

)\X]_ Dt "')\Xn i

[X]_ ct, o X tn]t

From Contextual Modal Types

[X1 : tl,"' , Xn - tn]t

Kim et al (2005), Rhiger (2005), Nanevski et al (2008)
to lexically scoped modal types:

)\X]_ Dt "')\Xn i

o oxe]t

The code type of \!!

Another intuition (yet unexplored)

[X1, X]t

——
A classifier?

Taha&Nielsen (2003)

A lexically scoped type system for multi-stage languages 8 of 40

Hygiene enforces abstractions:

let f(c) = T(Ax.lc)
inT(Ax. L(F(Tx))) —— 1T(Ax1. Axz. x1)

m |In semantics (well known):

Variable convention (Barendregt): a-convert
(i.e., consistently rename) when necessary,
to make bound and free variable differ.

= In type systems (AH):
Ditto

Several namespaces, one for each stage:

Y05 s Yn=1,Yn i Yntl, o, Ym oo

\

-~

past stages future stages

present stage

v € term-variables —, types

M= ey

M:M"kFe:t

v(x) =t
(Var)
Fy;MEx:t
Ty MEt s Toy+(x:t); Me:t
(=1
My ; MMt et/ =t
I';I"I—el:tz—u‘ I';F’l—ez:tz
(— E)

I';I"I—elezzt

M;MNkHe:t

My, Mk e: t

rsy, Mete:]t

(11

r ~, "= e: [t

M,v; Mkle: t

where 7 = dom(7), as a type.

Enforcing lexical scope

Don't throw away x : t here

XL (1 xe)

...because we
need it again here.

A lexically scoped type system for multi-stage languages 14 of 40

Fr-rkEt:k

(.
lexically scoped,
Kinding guarantees

that types are { correctly staged, and

\ well formed.

Fr-rkEt:k

(.
lexically scoped,
Kinding guarantees

that types are { correctly staged, and

\ well formed.

Ki=x% | env

Fr:r'et:x

Mo T MEG o«

F;F’I—t1—>t2::>|<

(K —)

M-kt k

x € dom(y)
(K-Var)
My TM"Ex:env
M;"Etpenv T;T7ME 6 env
(K-Union)
M:r'-t,t::env
(K 0)

My ;=0 ::env

Fr:r'et:x

Fy;MEtizenv [y ME6ox

(KD
R R F oY [P

Examples:
Scope extrusion

let ¢ : [lint ref = ref (12)

in T(Ax:int. --- J(c = Tx) ---

is correctly rejected, since

c : [Jlint ref
T : [x]int

let ¢ : [x]int ref = ref (12)
in T(Ax:int. --- [(c := Tx) ---)

is correctly rejected, since

the first x is unbound.

T(Ax:int.
1 (let ¢ : [x]int ref = ref (12)
in T(Ax:int. --- [(c := Tx) ---)))

is correctly rejected, since
c : [x]int ref
Tx : [x]int

and x and x are different variables.

Subtyping

t,t' <t

<t <t

[t1]t] <[]t

([t]t"is contravariantin t.)

F;F’I—e:tz H <t

(t-<)
Nr're:fy

;e t ;M <T;T%

(r-<)
M:MFe:t

Examples:
Subtyping

To type
let ¢ : [Jint = 11 in T(Ax:bool. [c)

coerce Jc from []int to [x]int.

To type
t(Ax:bool. [(--- run(f2) ---))

remove the binding
x:bool

from the context at 12.

T(A\x:int.
$(let ¢ : [x]int = ref (1)
in T(A\y:bool.
\L(c = TX; e))))

is accepted (and is safe).

Polymorphism

Polymorphic extension

e := -+ | AT k. e | e]t]

t o= - | T | VT k.t

A lexically scoped type system for multi-stage languages 310f 40

One namespace of type variables:

A|707"' s Yn—=1Yn VYn+1, 7fym|_°'

Vv Vv
past stages future stages
type variables present stage

A € type-variables — i, kinds

A|T; Ttk

A(T)=k
(K-Tvar)
A|T;"ET:k
A+(Tur)|T;T'EE
(K)

AT, I"EVT k. t

X

AT:Tke:t

A+(T=ur)|y;T'He:t

(V1)
Aly; T"EAT s k.e:VT k.t
L at stage O only (in this talk)
AT, Mre: VT okt AT T'Etok
(VE)

AT T"Felt):t{t'/T"}

AT:TFe:t

AT, v; T'k e: t
- ap

Alr ;Varl_Te:[’YaAenv]t

AT v, T'E e [7, At
([1E)

AT, vy, T'kHle: t

where Aeny = {7 | A(T) = env}, as a type.

m (R ::env)is a"placeholder” for a set of term
variables:

VR :env.[x,y,R]|t [x,y,a,b]t

instantiate

= Any (R :: env) in scope must go into a code type:

AR :env.

1)
I type [R]t’

m (R ::env)is a"placeholder” for a set of term
variables:

VR :env.[x,y,R]|t [x,y,a,b]t

instantiate

= Any (R :: env) in scope must go into a code type:

AR :env.
Ax : [R]t.

1)
I type [R]t’

m (R ::env)is a"placeholder” for a set of term
variables:

VR :env.[x,y,R]|t [x,y,a,b]t

instantiate

= Any (R :: env) in scope must go into a code type:

AR :env.
Ax : [R]t.

\—type[R]t’

Example:
Polymorphism

eta = AT :: *x. AU :: *. AR :: env.
M : VS :: env. [R,S]T — [R,S]U.
T(x T,
JE [(Tx)))

eta : VT :: *. VU :: *. VR :: env.
(VS :: env. [R, SIT — [R, SIU) —
[RI(T — U)

powbta n [S::env] (x:[Slint) =
if n=0 then
™
else

+(x * L(f (@-1) 5] x)

powgen n = eta [int] [int] [0] (powbta n)

ALY demonstrates that

a-equivalence is compatible with context-aware
code types (see Taha&Nielsen, POPL'03),

code types are lightweight,

there is no need for additional technologies to
handle side effects (see \Y) or run,

there is no need to restrict evaluation under
dynamic)s, e.g. by preventing it, or by replacing it
by substitution (see A=, CMT),

standard type-system machinery (environments,
subtyping, polymorphism) are sufficient.

ALY demonstrates that

a-equivalence is compatible with context-aware
code types (see Taha&Nielsen, POPL'03),

code types are lightweight,

there is no need for additional technologies to
handle side effects (see \Y) or run,

there is no need to restrict evaluation under
dynamic)s, e.g. by preventing it, or by replacing it
by substitution (see A=, CMT),
standard type-system machinery (environments,
subtyping, polymorphism) are sufficient.

Thanks

