Rigorous Simulation

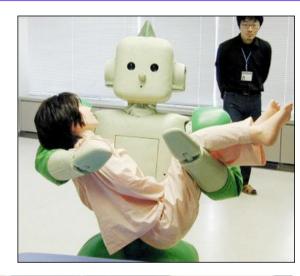
Walid Taha

Halmstad University and Rice University

Rigorous Simulation

Aaron Ames, **Kevin Atkinson**, Jerker Bengtsson, Raktim Bhattacharya, Paul Brauner, Robert Cartwright, Alexandre Chapoutot, **Adam Duracz**, **Jan Duracz**, Henrik Eriksson, Veronica Gaspes, Christian Grante, Jun Inoue, **Michal Konecny**, Marcie O'Malley, Travis Martin, Jawad Masood, Marisa Peralta, Cherif Salama, **Walid Taha**, Edwin Westbrook, Fei Xu, **Yingfu Zeng**, Yun Zhu Halmstad University, Rice University and Texas A&M, SP, Volvo Trucks

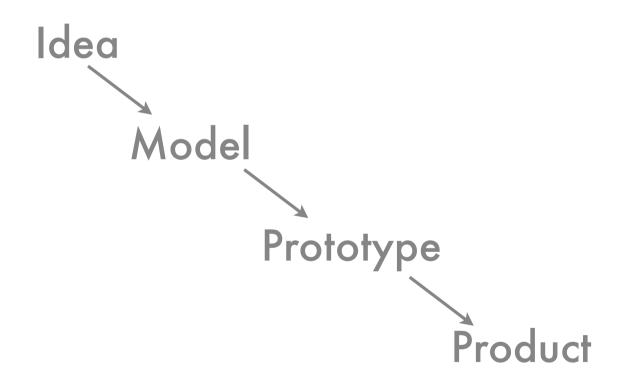
Robot Design



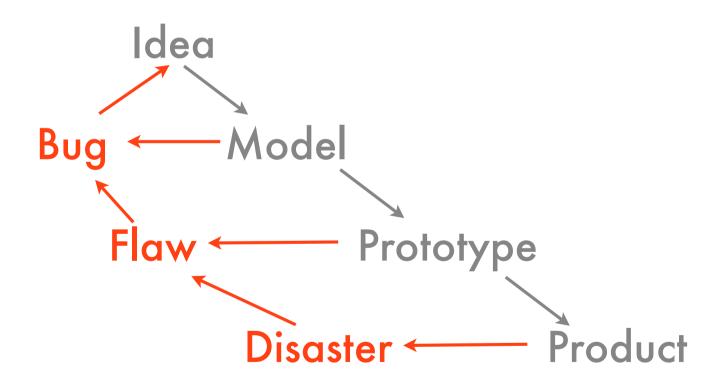
NG-Test Project



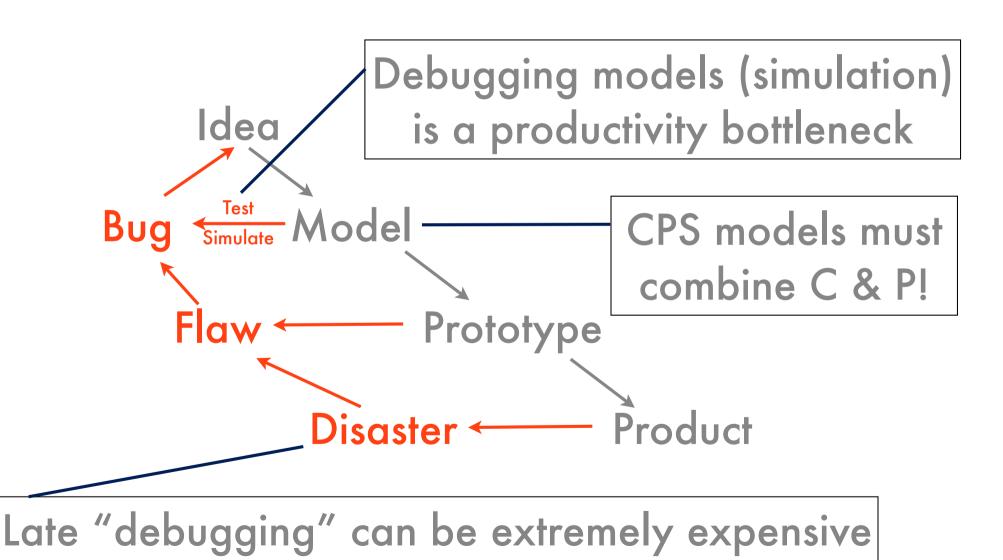
Simulation in innovation



Simulation in innovation

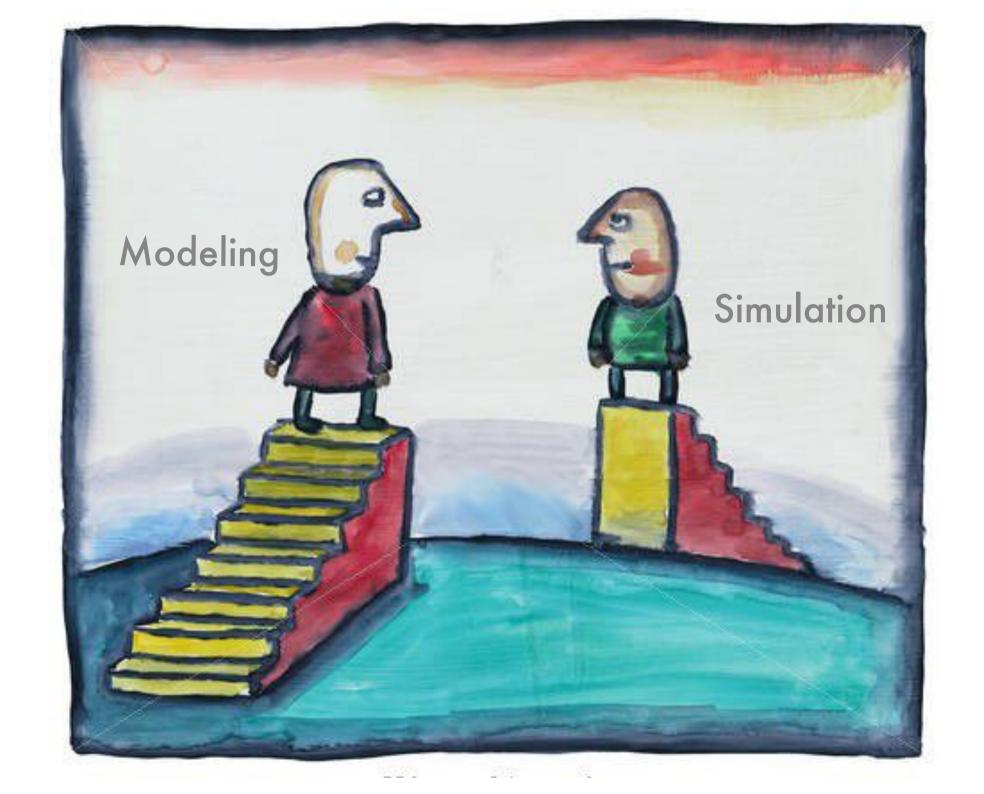


Rigorous Simulation



This talk

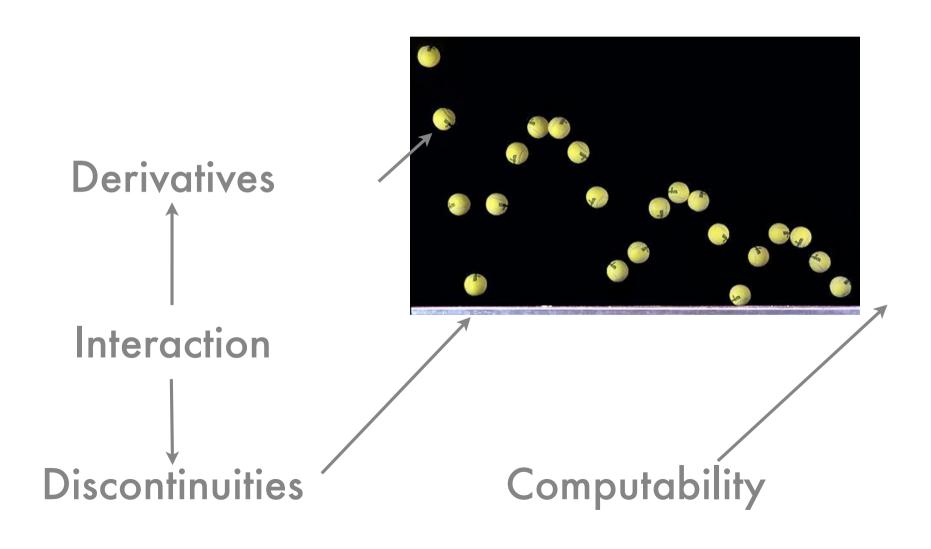
- The CPS simulation domain
- Available tools
- Rigorous simulation
- The staging connection
 - The E-L equation (previous work)
 - Binding time analysis (ongoing)



Why simulation is hard

- Solving continuous equations:
 - ODEs, DAEs, PDEs, IDEs, ...
 - IVP vs. BVP
- Hybrid aspects pervasive (both C & Ph)
- Dealing with precision in models
 - Uncertainty (intervals)

Hybrid systems basics



Specific problems

- Equality & zero crossing (if x=0 then ...)
- Zeno-behavior (bouncing ball)
- Static verification (e.g. solvable, stable)
- Numerical precision and validity
 - Pole detection (e.g. $x'=x^*x$, x(0)=1(?))
- Semantic treatment desperately needed

Current tools

- Simulink
- Mathematica, Maple
- ML, Haskell
- HA, e.g. CHARON
- Modelica, Verilog-AMS, ...

Strengths

- Simulink: Lots of models (IP)
- Mathematica, Maple: Symbolics
- ML, Haskell: Expressivity, concurrency
- HA, e.g. CHARON: Formal proof
- Modelica, Verilog-AMS: Equations

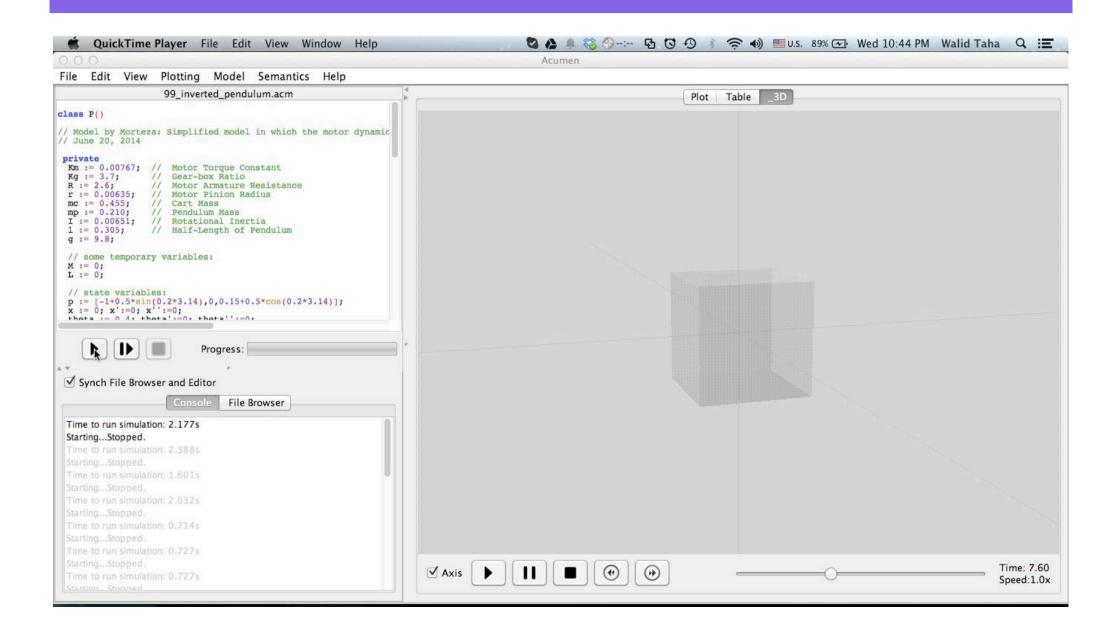
Weaknesses

- Simulink: Numeric semantics...
- Mathematica: Executability
- ML, Haskell: "Indeterminism"
- HA, e.g. CHARON: Scalability
- Modelica, Verilog-AMS: Semantics...

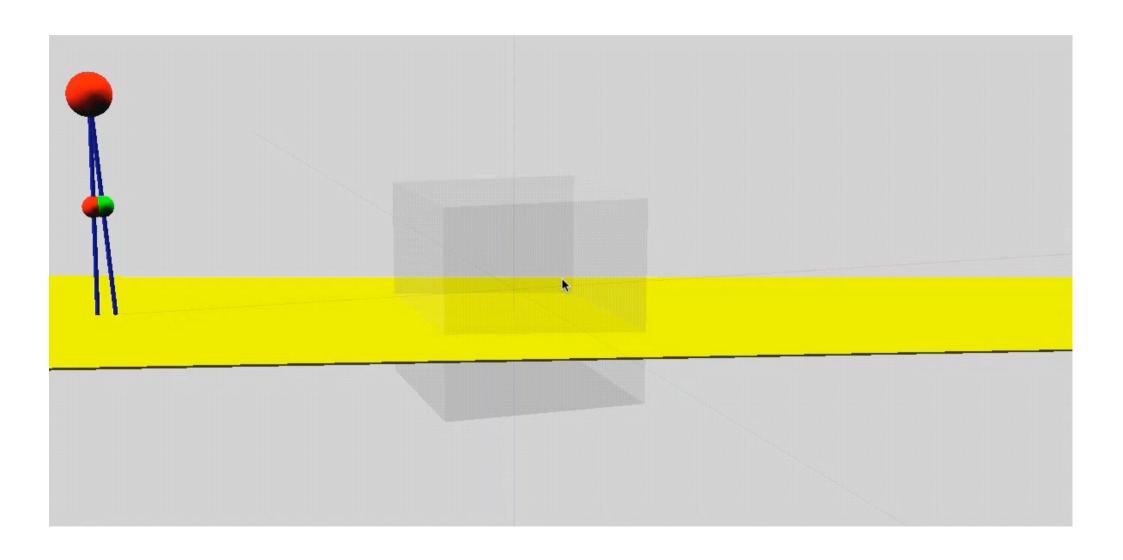
Acumen

- Acumen '09: continuous language
 - "Math as a programming language"
- Acumen '10 (- now): hybrid language
 - Hierarchical hybrid systems
 - IDE (automatic plotting & 3D view)
 - Rigorous semantics

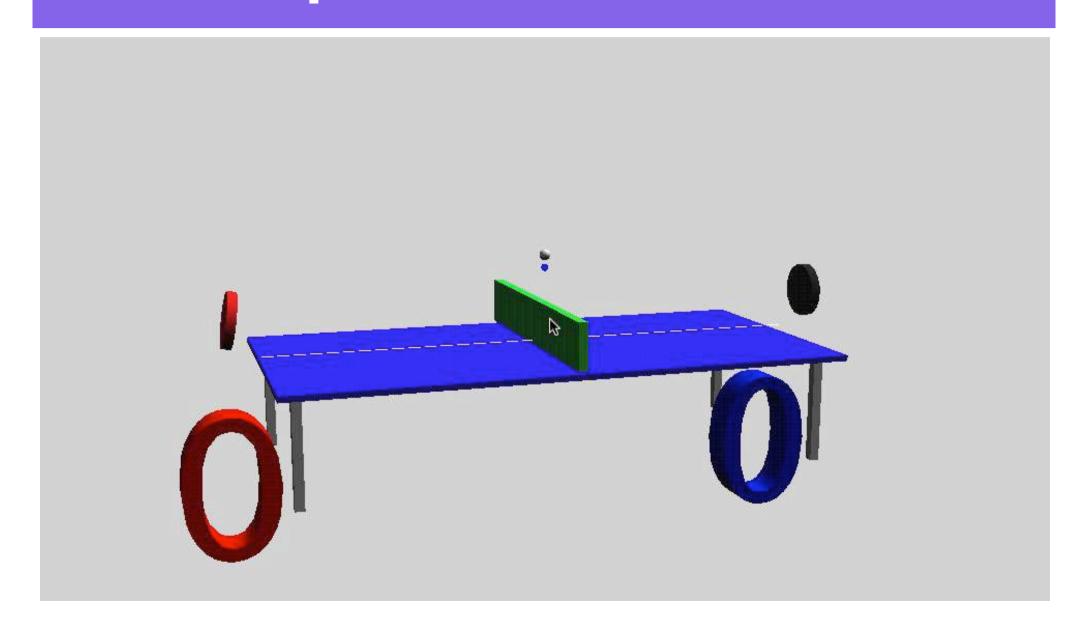
Basic Look and Feel



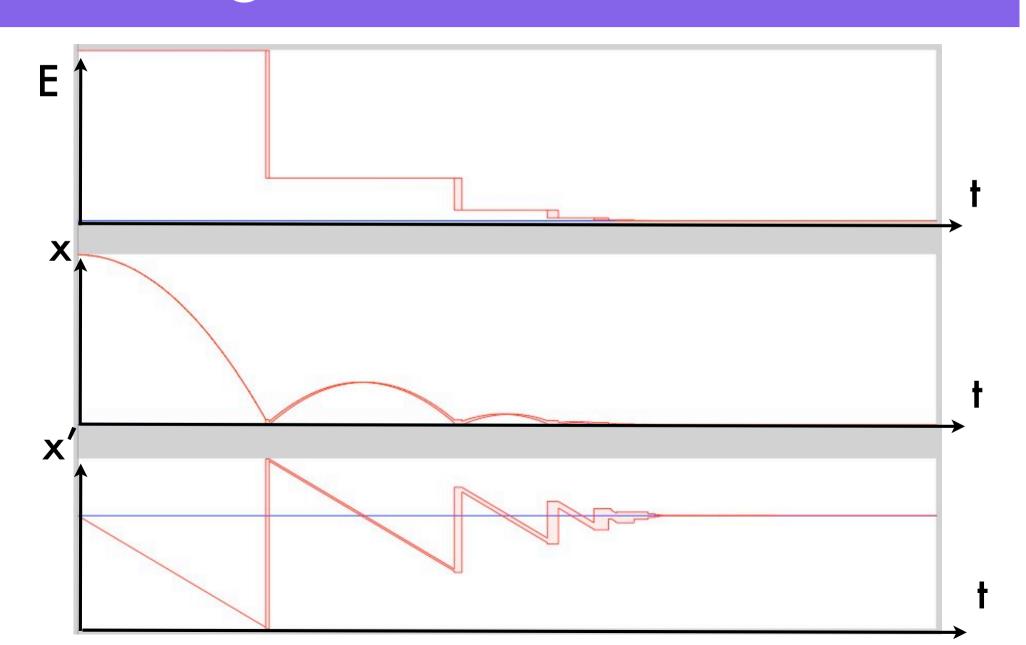
Hybrid Dynamics Example



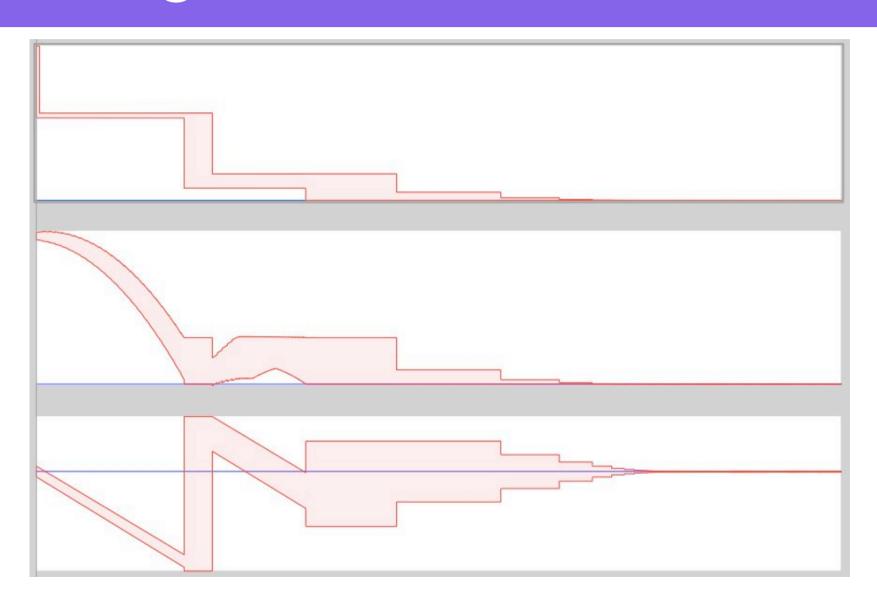
Example for CPS course



Rigorous Semantics



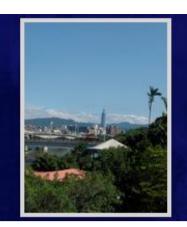
Rigorous Semantics



CPSNA 2013 The 1st IEEE International Conference on Cyber-Physical Systems, Networks, and Applications

Taipei, Taiwan

August 19 - 20, 2013



Enclosing the Behavior of a Hybrid System up to and Beyond a Zeno Point

Michal Konečný*, Walid Taha¹‡, Jan Duracz‡, Adam Duracz† and Aar *School of Engineering and Applied Science, Aston University, Birmingham, UK, Email: †Halmstad University, Halmstad, Sweden, Email: Walid. Taha@hh.se, Jan.Duracz@hh.s *Computer Science Department, Rice University, Texas, USA

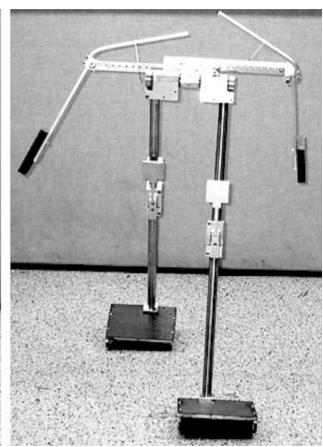
Department of Electrical & Computer Engineering, Texas A&M University, USA

Abstract—Even simple hybrid systems like the classic bouncing ball can exhibit Zeno behaviors. The existence of this type of behavior has so far forced simulators to either ignore some events or risk looping indefinitely. This in turn forces modelers to either insert ad hoe restrictions to circumvent Zeno behavior or to abandon hybrid modeling. To address this problem, we take a fresh look at event detection and localization. A key insight that emerges from this investigation is that an enclosure for a given time interval can be valid independently of the occurrence of a given event. Such an event can then even occur an unbounded number of times, thus making it possible to handle certain types of Zeno behavior.

systems over a decar interesting patholo lar behavior turns between tradition its existence can it tions and/or enterin consideration in det systems simulator in This phenomenon

This phenomenon systems. It can oc with impact constr

The Staging Connection

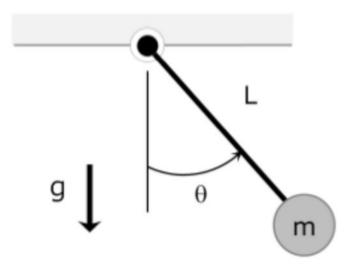


A passive robot walks naturally down inclines

Can this be generalized?

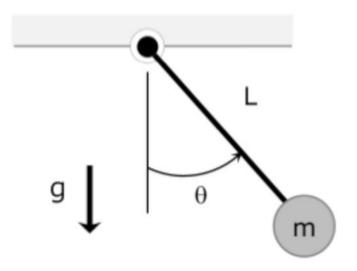
The Staging Connection

- Effort by one of our three domain experts
- Robot model uses 8x8 Lagrangian
 - Must convert to "executable" math
 - Mathematica gave a 13MB derivative!
- It's very hard for robotics experts to find the right tools for simulation



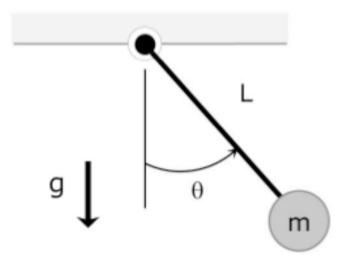
$$m = 5$$
 $g = 9.81$ $\ell = 3$ $I = m\ell^2$
 $F\ell\cos(\theta) - mg\ell\sin(\theta) = I\ddot{\theta}$

(a) Newtonian Formulation of a Pendulum



$$m = 5$$
 $g = 9.81$ $\ell = 3$ $I = m\ell^2$
 $F\ell\cos\left(\theta\right) - mg\ell\sin\left(\theta\right) = I\ddot{\theta}$

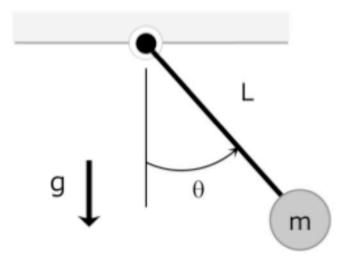
(a) Newtonian Formulation of a Pendulum



$$m=5$$
 $g=9.81$ $\ell=3$ $I=m\ell^2$
$$T=\frac{1}{2}I\dot{\theta}^2 \quad V=mg\ell\left(1-\cos\left(\theta\right)\right)$$

$$L=T-V \qquad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=0$$

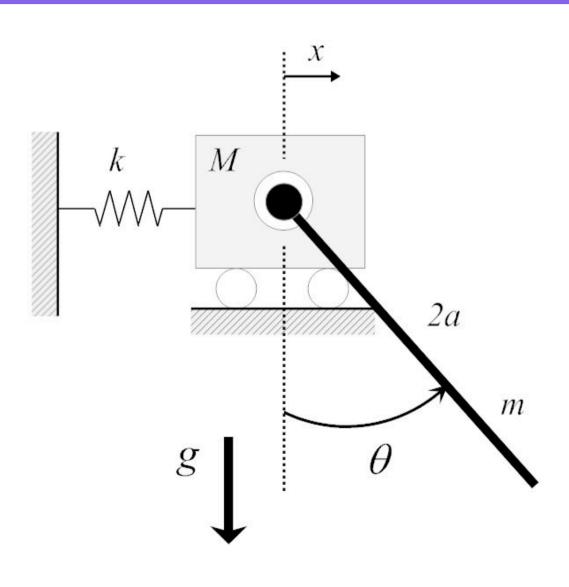
(b) Lagrangian Formulation of a Pendulum



$$m = 5$$
 $g = 9.81$ $\ell = 3$ $I = m\ell^2$
$$T = \frac{1}{2}I\dot{\theta}^2 \quad V = mg\ell \left(1 - \cos(\theta)\right)$$

$$L = T - V \qquad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = 0$$

(b) Lagrangian Formulation of a Pendulum



$$\begin{split} q &= [x,\theta] \quad a = 1 \quad m = 2 \quad M = 5 \\ g &= \frac{49}{5} \quad k = 2 \quad I = \frac{4}{3}ma^2 \\ T &= \frac{1}{2}\left(M+m\right)\dot{x}^2 + ma\dot{x}\dot{\theta}\cos\left(\theta\right) + \frac{2}{3}ma^2\dot{\theta}^2 \\ V &= \frac{1}{2}kx^2 + mga\left(1-\cos\left(\theta\right)\right) \quad L = T-V \\ \forall i \in \dim\left(q\right) \quad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = 0 \end{split}$$

(d) Pendulum/Mass

$$q = [x, \theta] \quad a = 1 \quad m = 2 \quad M = 5$$

$$g = \frac{49}{5} \quad k = 2 \quad I = \frac{4}{3}ma^{2}$$

$$T = \frac{1}{2}(M+m)\dot{x}^{2} + ma\dot{x}\dot{\theta}\cos(\theta) + \frac{2}{3}ma^{2}\dot{\theta}^{2}$$

$$V = \frac{1}{2}kx^{2} + mga(1-\cos(\theta)) \quad L = T - V$$

$$\forall i \in \dim(q) \quad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial q_{i}} = 0$$

(d) Pendulum/Mass

From Acumen to DAEs

$$q = [x, \theta] \quad a = 1 \quad m = 2 \quad M = 5 \quad g = 9.8 \quad k = 2$$

$$I = \frac{4}{3}ma^2 \quad T = \frac{1}{2}(M+m)\dot{x}^2 + ma\dot{x}\dot{\theta}\cos(\theta) + \frac{2}{3}ma^2\dot{\theta}^2$$

$$V = \frac{1}{2}kx^2 + mga(1-\cos(\theta)) \quad L = T - V$$

$$\forall i \in \dim(q) \quad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) - \frac{\partial L}{\partial q_i} = 0$$

(a) Acumen Source for Pendulum/Mass Example

Defined:
$$q := [x, \theta]$$
 $a := 1$... $I := \frac{4}{3}ma^2$...
Computed: $\forall i \in \dim(q)$ $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$

(b) After Defined Variable Analysis

From Acumen to DAEs

Defined:
$$q := [x, \theta]$$
 $a := 1$... $I := \frac{4}{3}ma^2$...

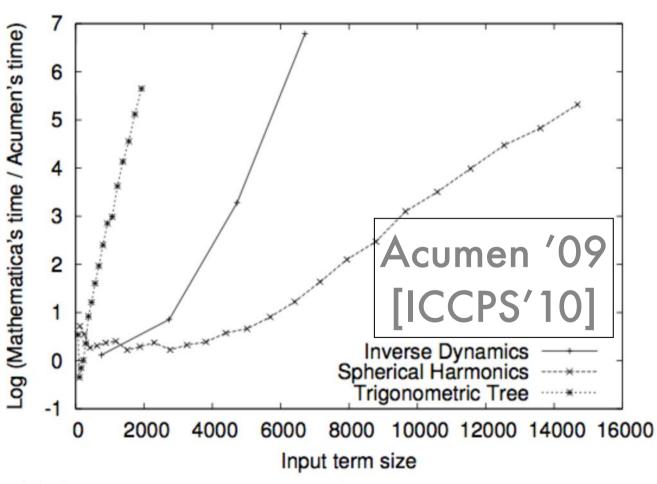
Computed:
$$\forall i \in \dim(q) \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$$

(b) After Defined Variable Analysis

Defined:
$$q := \boxed{x}, \theta \boxed{a} := \boxed{1} \dots I := \boxed{\frac{4}{3}ma^2} \dots$$
Computed: $\forall i \in \dim(q) \quad \boxed{\frac{d}{dt} \left(\frac{\partial L}{\partial |\dot{q}_i|}\right) - \frac{\partial L}{\partial |q_i|} = 0}$

(c) After Binding-Time Analysis (BTA)

Effect on Performance



(f) Acumen is exponentially faster than Mathematica.

BTA: Syntax


```
e \in \mathsf{Exp} ::= c, x, \langle e_i \rangle, f(\langle e_i \rangle) s \in \mathsf{Cmd} ::= x = e; \ x' = e; \ \mathsf{if}(e_0) \ s_1 \ ; \ s_2 c \in \mathsf{Constraints} ::= \mathit{Stat}; \ \mathit{Dyn}; \ l_1 \sqsubseteq l_2
```

$$ho: \mathsf{Exp} o l \; ; \; \llbracket \cdot
rbracket_{
ho,l} : \langle c_i
angle$$

BTA: Collecting constroynts

BTA: Solving constraints

$$\begin{array}{cccc} C \cup Stat^k \cup x \sqsubseteq k & \to & C \cup Stat^k \cup Stat^x \\ C \cup Dyn^x \cup x \sqsubseteq k & \to & C \cup Dyn^x \cup Dyn^k \\ C \cup Stat^x \cup Dyn^x & \to & contradiction \end{array}$$

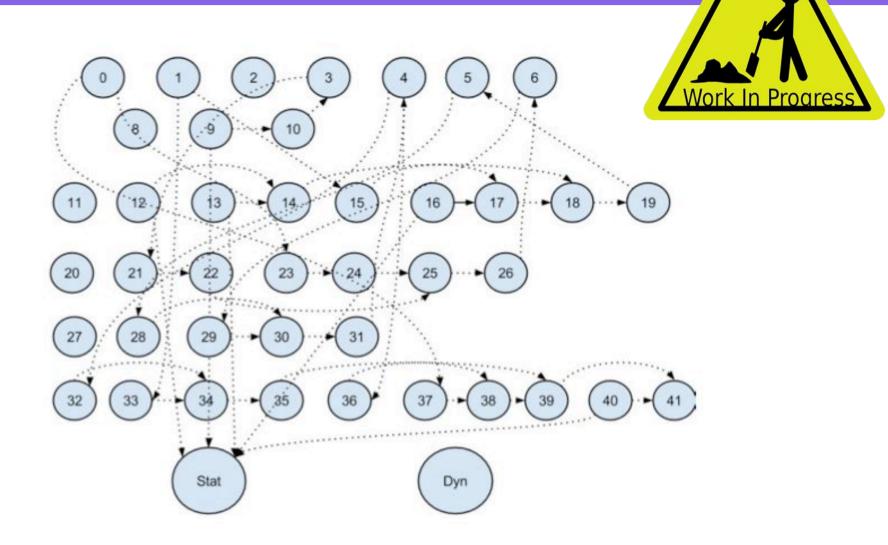
Example: Pendulum

```
// Source Model

model Main(simulator)=
  initially
    t=pi/4, t'=0, t''= 0,
    g= 0, L=0, T = 0, V = 0
  always
  g = 9.8,
  T = (1/2) * t'^2,
  V = -g*cos(t),
  L = T - V,
  L'[t']' - L'[t]=0
```

```
// Labeled model model model Main(simulator)= initially t^0 = pi/4, t'^1 = 0, t''^2 = 0, g^3 = 0, L^4 = 0, T^5 = 0, V^6 = 0 always (g^8 = 9.8^9)^{10}, (T^{11} = ((1^{12} / 2^{13})^{14}*(t'^{15}^2)^{16})^{17})^{18})^{19}, (V^{20} = ((-g^{21})^{22}*\cos(t^{23})^{24})^{25})^{26}, ((L^{32}, [t'^{33}]^{34}, 35 - L^{36}, [t'^{37}]^{38})^{39} = 0^{40})^{41}
```

Example: Pendulum



Example: Pendulum

```
// Specializtion

model Main(simulator)=
  initially
    t=pi/4, t'=0, t''= 0,
    g= 0, L=0, T = 0, V = 0
  always
  g = 9.8,
  T = (1/2) * t'^2,
  V = -g*cos(t),
  L = 0.5 * t' ^ 2 - (-9.8 * cos(t)),
  0.5 * 2 * t'' + 9.8 * sin(t)= 0
```

```
// Gaussian Elimination

model Main(simulator)=
  initially
    t=pi/4, t'=0, t''= 0,
    g= 0, L=0, T = 0, V = 0
  always
  g = 9.8,
  T = (1/2) * t'^2,
  V = -g*cos(t),
  L = 0.5 * t' ^ 2 - (-9.8 * cos(t)),
  t'' = - 9.8 * sin(t)
```

BTA: Next Steps

- Formalizing correctness criteria
 - "Well-annotated programs don't go wrong"
- Establishing sufficiency for an interesting class of models
 - Example: Rigid body dynamics

Conclusions (1/2)

- Rigorous simulation is a powerful tool
- Being based on simulation makes intuitive
- Being rigorous makes it a verification tool
 - Semantics makes the tool rigorous
 - Staging implements the semantics efficiently

Conclusions (2/2)

- Rigorous simulation naturally accommodates parametric uncertainty
 - Modeling uncertainty makes simulations much more informative
- Using rigorous simulation during early-stage design has a distinctive flavor that promotes robust design

Thank you!

- To download our papers:
 - http://effective-modeling.org
- To download Acumen
 - http://acumen-language.org
- For CPS Lecture Notes
 - http://bit.ly/LNCPS-2014