
The Future and Potential of
Aspect-Oriented Programming

A Program Algebra for AOP

Christian Lengauer

Department of Informatics and Mathematics



Assertions
Assertion 1:

AOP is a new and fundamental form of modular programming.

Assertion 2:
Its effects are not well understood and its uses may not be pervasive.

Assertion 3:
AOP is more than AspectJ.

Assertion 4:
AOP can be as harmful to the program structure as the GOTO.

Weaving potentially destroys the structure of a program.
Any change at any place: around advice without proceed.
Names can get “captured”: overriding with inter-type declarations.

Assertion 5:
Feature-oriented programming is incremental program development
by adding features. FOP can be implemented via AOP, but it can
shield the programmer from the dangers of AOP by imposing a discipline.

Assertion 6:
FOP can be reasoned about in a program algebra. The main
operations are (1) adding code and (2) applying advice to
pointcuts (weaving).

2/4



A Program Algebra for FOP

weave :: feature expression → module expression

Module Expressions.

The operands are
a base program,
introductions (inter-type declarations),
advice.

The operations are
introduction sum ::

introduction → module expression → module expression
advice application ::

advice → module expression → module expression

Feature Expressions.

A feature is an advice/introduction pair.
A feature expression is a sequence of features.

weave :: [feature] → base program → module expression

3/4



Weaving Tactics

Different weaving orders can be defined and compared.

What is weave [(a1,i1),(a2,i2)] b?

a2(a1(i2 + i1 + b))

This is the weaving tactic of AspectJ.
It is called unbounded quantification

a2(i2 + a1(i1 + b))

This is called bounded quantification.

i2 + a2(i1 + a1(b))

This is the weaving tactic of AHEAD.
It uses bounded quantification and
shields introductions from advice.

There is such a thing as higher-order advice:

2nd-order advice :: advice → advice

4/4


